Electron Transport in Hole-Transport-Type Photoconductive Film

1993 ◽  
Vol 32 (Part 2, No. 7B) ◽  
pp. L1005-L1008 ◽  
Author(s):  
Toru Nakazawa ◽  
Akihiko Kawahara ◽  
Yasufumi Mizuta ◽  
Eiichi Miyamoto ◽  
Nariaki Mutoh
2018 ◽  
Vol 6 (38) ◽  
pp. 10308-10314 ◽  
Author(s):  
Su Kyeong Shin ◽  
Si Hyun Han ◽  
Jun Yeob Lee

High triplet energy exciplexes which can improve the lifetime of blue phosphorescent organic light-emitting diodes were developed by mixing a carbazole based hole transport type host with a CN modified carbazole based electron transport type host.


Author(s):  
Ju Hui Yun ◽  
Jae-Min Kim ◽  
Won Jae Chung ◽  
Jun Seop Lim ◽  
Jun Yeob Lee ◽  
...  

A novel electroplex host with two triplet exciton up-converting channels for suppressed triplet exciton triggered degradation mechanisms was developed using an electron transport type host (n-type host) with thermally activated...


2002 ◽  
Vol 725 ◽  
Author(s):  
Leonidas C. Palilis ◽  
Hideyuki Murata ◽  
Antti J. Mäkinen ◽  
Manabu Uchida ◽  
Zakya H. Kafafia

AbstractWe report on highly efficient molecular organic light-emitting diodes (MOLEDs) using two novel silole derivatives as emissive and electron transport materials. A silole derivative, namely 2,5-di-(3-biphenyl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PPSPP), which shows blue fluorescence with a high photoluminescence quantum yield of 85% in the solid state, was used as the emissive material. Another silole derivative, namely 2,5-bis-(2‘2“-bipyridin-6-yl)-1,1- dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), that exhibits a non-dispersive high electron mobility of 2x10-4 cm2/Vsec was used as the electron transport material. MOLEDs using these two siloles and a common hole transport material show blue-green emission centered at 495 nm. This red-shifted electroluminescence (EL) band relative to the blue fluorescence of PPSPP is assigned to a PPSPP:NPB exciplex. A low operating voltage of 4.5 V was measured at a luminance of 100 cd/m2 and an EL quantum efficiency of 3.4% was achieved at 100 A/m2. To our knowledge, this is the highest EL quantum efficiency ever reported based on exciplex emission.


2018 ◽  
Vol 6 (29) ◽  
pp. 14255-14261 ◽  
Author(s):  
Huan Li ◽  
Guoqing Tong ◽  
Taotao Chen ◽  
Hanwen Zhu ◽  
Guopeng Li ◽  
...  

A derivative-phase CsPb2Br5 is introduced into inorganic perovskite solar cells, which will effectively eliminate interface defects, lower the energy barrier of electron transport layer and suppress the recombination at the interface of hole transport layer in the devices.


RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72462-72470 ◽  
Author(s):  
Jingling Li ◽  
Hu Jin ◽  
Kelai Wang ◽  
Dehui Xie ◽  
Dehua Xu ◽  
...  

In this work, all-solution processed, multi-layer yellow QLEDs, consisting of a hole transport layer of poly(9-vinylcarbazole), emissive layer of ligand exchanged CuInS2/ZnS QDs, and electron transport layer of ZnO nanoparticles, are fabricated.


1996 ◽  
Vol 425 ◽  
Author(s):  
C. P. Lin ◽  
T. Tsutsui ◽  
S. Saito ◽  
S. H. Chen ◽  
J. C. Mastrangelo ◽  
...  

AbstractOrganic electroluminescent(EL) diodes using spin-coat films of cyclohexane-based glass-forming liquid crystal (LC) materials were fabricated. The cyclohexane-based LC materials were found to be useful for EL diodes. Blending the LC materials with charge transport molecules was found to be a promising method for improving device performance. Conventional hole transport and electron transport molecules were found to show a tendency to form exciplexes with cyclohexanebased LC materials. This difficulty was overcome by the introduction of cyclohexane-based charge transport molecules. The EL quantum efficiency of 0.06% was attained in the single-layer devices with two-component blends.


2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


Sign in / Sign up

Export Citation Format

Share Document