Atomic Species Analysis and Three-Dimensional Observation by High-Angle Hollow-Cone Dark-Field Transmission Electron Microscopy

1995 ◽  
Vol 34 (Part 1, No. 9A) ◽  
pp. 5032-5036 ◽  
Author(s):  
Hiroshi Kakibayashi ◽  
Kuniyasu Nakamura ◽  
Ruriko Tsuneta ◽  
Yasuhiro Mitsui
1997 ◽  
Vol 3 (S2) ◽  
pp. 479-480
Author(s):  
Hiroshi Kakibayashi ◽  
Kuniyasu Nakamura ◽  
Ruriko Tsuneta

The performance of electronic devices, such as dynamic random access memories, is degraded by contamination due to impurity atoms as well as crystalline imperfections created during processing. The evaluation of those degradation causes is generally done using an analytical transmission electron microscope. The information obtained, however, is limited to two-dimensional images of the specimen as seen from a single direction. Advanced semiconductor devices with finer-pattern structures are expected to exhibit larger fluctuations in device performance due to the spatial distribution of the faults. A new method has thus been examined to determine the atomic species and to reconstruct three-dimensional (3-D) images of the specimen structure by using high-angle hollow-cone dark-field transmission electron microscopy (HADF-TEM).A incident angle controller was added to a conventional TEM to control the electron-beam deflection coils. This enables the incident electron beam to be inclined and rotated, providing hollow-cone illumination of the specimen, as shown in Fig. 1.


2014 ◽  
Vol 47 (5) ◽  
pp. 1729-1735 ◽  
Author(s):  
Xin Nie ◽  
Yimin Guan ◽  
Dongshan Zhao ◽  
Yu Liu ◽  
Jianian Gui ◽  
...  

The crystallographic orientation relationships (ORs) of precipitated β-Mg2Sn particles in Mg–9.76 wt% Sn alloy aged at 573 K for 5 h, corresponding to its peak hardness, were investigated by advanced transmission electron microscopy (TEM). OR-3 of (110)β//(0001)αand [\overline 111]β//[1\overline 210]αand OR-4 of (110)β//(0001)αand [001]β//[2\overline 1\overline 10]αare the key ORs of β-Mg2Sn particles in the alloy. The proportions of β-Mg2Sn particles exhibiting OR-3 and OR-4 were determined as 75.1 and 24.3%, respectively. Crystallographic factors determined the predominance of OR-3 in the precipitated β-Mg2Sn particles. This mechanism was analyzed by a three-dimensional invariant line model constructed using a transformation matrix in reciprocal space. Models of the interface of precipitated β-Mg2Sn and the α-Mg matrix were constructedviahigh-resolution TEM and atomic resolution high-angle annular dark-field scanning TEM.


Sign in / Sign up

Export Citation Format

Share Document