Analysis of Piezoelectric Materials for Energy Harvesting Devices under High-gVibrations

2007 ◽  
Vol 46 (10A) ◽  
pp. 6755-6760 ◽  
Author(s):  
Dongna Shen ◽  
Song-Yul Choe ◽  
Dong-Joo Kim
Author(s):  
Christopher Green ◽  
Karla M. Mossi ◽  
Robert G. Bryant

Wireless sensors are an emerging technology that has the potential to revolutionize the monitoring of simple and complex physical systems. Prior research has shown that one of the biggest issues with wireless sensors is power management. A wireless sensor is simply not cost effective unless it can maintain long battery life or harvest energy from another source. Piezoelectric materials are viable conversion mechanisms because of their inherent ability to covert vibrations to electrical energy. Currently a wide variety of piezoelectric materials are available and the appropriate choice for sensing, actuating, or harvesting energy depends on their characteristics and properties. This study focuses on evaluating and comparing three different types of piezoelectric materials as energy harvesting devices. The materials utilized consisted on PZT 5A, a single crystal PMN 32%PT, and a PZT 5A composite called Thunder. These materials were subjected to a steady sinusoidal vibration provided by a shaker at different power levels. Gain of the devices was measured at all levels as well as impedance in a range of frequencies was characterized. Results showed that the piezoelectric generator coefficient, g33, predicts the overall power output of the materials as verified by the experiments. These results constitute a baseline for an energy harvesting system that will become the front end of a wireless sensor network.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2055 ◽  
Author(s):  
Hiroki Kurita ◽  
Kenichi Katabira ◽  
Yu Yoshida ◽  
Fumio Narita

Wearable energy harvesting devices attract attention as the devices provide electrical power without inhibiting user mobility and independence. While the piezoelectric materials integrated shoes have been considered as wearable energy harvesting devices for a long time, they can lose their energy harvesting performance after being used several times due to their brittleness. In this study, we focused on Fe–Co magnetostrictive materials and fabricated Fe–Co magnetostrictive fiber integrated shoes. We revealed that Fe–Co magnetostrictive fiber integrated shoes are capable of generating 1.2 µJ from 1000 steps of usual walking by the Villari (inverse magnetostrictive) effect. It seems that the output energy is dependent on user habit on ambulation, not on their weight. From both a mechanical and functional point of view, Fe–Co magnetostrictive fiber integrated shoes demonstrated stable energy harvesting performance after being used many times. It is likely that Fe–Co magnetostrictive fiber integrated shoes are available as sustainable and wearable energy harvesting devices.


Author(s):  
Anuruddh Kumar ◽  
Rajeev Kumar ◽  
Vishal S. Chauhan ◽  
Rahul Vaish

Energy harvesting is one of the emerging applications of piezoelectric materials. In order to replace conventional lead-based materials with lead-free materials, it is important to evaluate their performance for such applications. In the present study, finite element method-based simulation shows mean power density produced from ( K 0.475 Na 0.475 Li 0.05)( Nb 0.92 Ta 0.05 Sb 0.03) O 3 add with 0.4 wt.% CeO 2 and 0.4 wt.% MnO 2 (KNLNTS) bimorph is 96.64% of lead zirconate titanate ( Pb [ Zr x Ti 1-x] O 3) (PZT) ceramics. Load resistance (R), length of proof mass (Lm) and thickness of host layer (th) are optimized (using genetic algorithm) for maximum power density and tuning the operating frequency range which is near to natural frequency of the structure. The lead-free piezoelectric material KNLNTS has comparable results to that of PZT for piezoelectric energy harvester in the ambient frequency range of 90 Hz to 110 Hz. Results show that KNLNTS ceramics can be potentially used in energy harvesting devices.


2015 ◽  
Vol 811 ◽  
pp. 204-209
Author(s):  
C. Daniel Comeagă ◽  
Cristian Necula ◽  
Octavian Donţu

Among different types of energy-harvesting devices, the electrodynamic one is widely used due to the simple structure, high stability in time (better than piezoelectric materials). In the same time, the same structure could be applied for another application – scanning device. This article presents an analysis regarding the optimum design of the magnetic structure not as a bulk magnet, with specific problems during manufacturing, but as an array of micromagnets. The target function is the force acting on a mobile plate and the magnetic inductivity at that level.


Sign in / Sign up

Export Citation Format

Share Document