Heating Mechanism of Deuterium Precipitates Imbedded in Al upon Electron Bombardment – Spin-Flip-Phonon-Maser Action of Deuteron Nucleus –

2006 ◽  
Vol 75 (10) ◽  
pp. 104706 ◽  
Author(s):  
Kohji Kamada
1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


2003 ◽  
Vol 777 ◽  
Author(s):  
J.S. Romero ◽  
A.G. Fitzgerald

AbstractCopper migration is observed in the SEM in amorphous GeSe2/Cu thin films when an electron beam is focused in pulsed or continuous operation on the surface of these thin films. The phenomenon can be explained using a simple model in which the population of D- centers is considered to increase upon electron irradiation. The increase in the D- center population is envisaged as due to the breaking of bonds by the electron radiation and by the constant presence of negative charge in irradiated regions. Changes in copper concentration of 20%-30% have been obtained. Additionally we have observed the local crystallization of amorphous GeSe2/Cu thin films in the TEM when the samples were subjected to intense electron bombardment. The crystalline product has been identified as Berzelianite (Cu2Se).


1966 ◽  
Author(s):  
W. ECKHARDT ◽  
H. KING ◽  
R. KNECHTLI ◽  
W. WARD

2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Sadashige Matsuo ◽  
Kazuyuki Kuroyama ◽  
Shunsuke Yabunaka ◽  
Sascha R. Valentin ◽  
Arne Ludwig ◽  
...  

1966 ◽  
Vol 4 (3) ◽  
pp. 107-109 ◽  
Author(s):  
J.L. Delany ◽  
J. Hirsch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document