Effect of geometry and field inside the pole piece in an electron bombardment thruster

1970 ◽  
Author(s):  
D. FITZGERALD ◽  
H. KAUFMAN ◽  
W. MICKELSEN
1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


Author(s):  
M. Strojnik

Magnetic lenses operating in partial saturation offer two advantages in HVEM: they exhibit small cs and cc and their power depends little on the excitation IN. Curve H, Fig. 1, shows that the maximal axial flux density Bz max of one of the lenses investigated changes between points (3) and (4) by 5% as the excitation varies by 40%. Consequently, the designer can relax the requirements concerning the stability of the lens current supplies. Saturated lenses, however, can only be used if (i) unwanted fields along the optical axis can be controlled, (ii) 'wobbling' of the optical axis due to inhomogeneous saturation around the pole piece faces is prevented, (iii) ample ampere-turns can be squeezed into the space available, and (iv) the lens operating point covers a sufficient range of accelerating voltages.


Author(s):  
K. K. Christenson ◽  
J. A. Eades

One of the strengths of the Philips EM-400 series of TEMs is their ability to operate under two distinct optical configurations: “microprobe”, the normal TEM operating condition which allows wide area illumination, and “nanoprobe”, which gives very small probes with high angular convergence for STEM imaging, microchemical and microstructural analyses. This change is accomplished by effectively turning off the twin lens located in the upper pole piece which changes the illumination from a telefocus system to a condenser-objective system. The deflection and tilt controls and alignments are designed for microprobe use and do not function properly when in nanoprobe. For instance, in nanoprobe the deflection control gives a mix of deflection and tilt; as does the tilt control.


Author(s):  
E. Silva ◽  
R. Scozia

The purpose in obtaining zone axis pattern map (zap map) from a given material is to provide a quick and reliable tool to identify cristaline phases, and crystallographic directions, even in small particles. Bend contours patterns and Kossel lines patterns maps from Zr single crystal in the [0001] direction have been presented previously. In the present communication convergent beam electron diffraction (CBED) zap map of Zr will be shown. CBED patterns were obtained using a Philips microscope model EM300, which was set up to carry out this technique. Convergent objective upper pole piece for STEM and some electronic modifications in the lens circuits were required, furthermore the microscope was carefully cleaned and it was operated at a vacuum eminently good.CBED patterns in the Zr zap map consist of zero layer disks, showing fine details within them which correspond to intersecting set of higher order Laue zone (HOLZ) deficiency lines.


Author(s):  
Y. Harada ◽  
K. Tsuno ◽  
Y. Arai

Magnetic objective lenses, from the point of view of pole piece geometry, can he roughly classified into two types, viz., symmetrical and asymmetrical. In the case of the former, the optical properties have been calculated by several authors1-3) and the results would appear to suggest that, in order to reduce the spherical and chromatic aberration coefficients, Cs and Cc, it is necessary to decrease the half-width value of the axial field distribution and to increase the peak flux density. The expressions for either minimum Cs or minimum Cc were presented in the form of ‘universal’ curves by Mulvey and Wallington4).


2003 ◽  
Vol 777 ◽  
Author(s):  
J.S. Romero ◽  
A.G. Fitzgerald

AbstractCopper migration is observed in the SEM in amorphous GeSe2/Cu thin films when an electron beam is focused in pulsed or continuous operation on the surface of these thin films. The phenomenon can be explained using a simple model in which the population of D- centers is considered to increase upon electron irradiation. The increase in the D- center population is envisaged as due to the breaking of bonds by the electron radiation and by the constant presence of negative charge in irradiated regions. Changes in copper concentration of 20%-30% have been obtained. Additionally we have observed the local crystallization of amorphous GeSe2/Cu thin films in the TEM when the samples were subjected to intense electron bombardment. The crystalline product has been identified as Berzelianite (Cu2Se).


1966 ◽  
Author(s):  
W. ECKHARDT ◽  
H. KING ◽  
R. KNECHTLI ◽  
W. WARD

1966 ◽  
Vol 4 (3) ◽  
pp. 107-109 ◽  
Author(s):  
J.L. Delany ◽  
J. Hirsch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document