scholarly journals Charged Perfect Fluid Cylindrical Gravitational Collapse

2011 ◽  
Vol 80 (10) ◽  
pp. 104002 ◽  
Author(s):  
Muhammad Sharif ◽  
Ghulam Abbas
2019 ◽  
Vol 34 (03) ◽  
pp. 1950025 ◽  
Author(s):  
H. Nazar ◽  
G. Abbas

The purpose of this paper is to discuss the perfect fluid gravitational collapse in modified f(R) metric gravity theories with non-minimal curvature coupled to matter. For this inference, we investigate the effects on self-gravitating implosion with spherically symmetric non-static geometry in the presence of extra force [Formula: see text], that express the cosmic expansion with dark source constraints. Matching conditions are given in which we have taken the insertion of non-static interior and static exterior regions along with cosmological constant. We have investigated the apparent horizons with effective results and along with their physical interpretation. It is analyzed that the extra component of dark source material reduces the gravitating implosion, hence slowing the rate of collapse. This study also reflects the contribution towards the perfect fluid for the generalization in f(R) gravity with zero coupling constant [Formula: see text].


2008 ◽  
Vol 17 (11) ◽  
pp. 2143-2158 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the first kind in 2+1 dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


2008 ◽  
Vol 17 (08) ◽  
pp. 1271-1281 ◽  
Author(s):  
SUBENOY CHAKRABORTY ◽  
TANWI BANDYOPADHYAY

In this work, the gravitational collapse of an inhomogeneous spherical star model, consisting of inhomogeneous dust in the background of perfect fluid or anisotropic fluid, is considered. The process of collapse is first examined separately for the dust and perfect fluid, and then under their combined effect, with or without interaction, for both marginally and nonmarginally bound cases. Finally, collapsing matter in the form of anisotropic fluid is investigated and it is found to be similar to that in the study by Chakraborty et al. (2005).


2014 ◽  
Vol 29 (35) ◽  
pp. 1450192 ◽  
Author(s):  
Muhammad Sharif ◽  
Rubab Manzoor

This paper investigates the phenomenon of gravitational collapse of Lemaitre–Tolman–Bondi (LTB) model in the presence of Brans–Dicke (BD) scalar field with nonzero potential field. We find a class of solutions by taking perfect fluid as well as scalar field and check the validity of weak energy conditions. It turns out that two different types of singularities are formed in the presence of scalar field. We conclude that the end state of gravitational collapse turns out to be a black hole (BH) contrary to general relativity (GR).


2002 ◽  
Vol 11 (02) ◽  
pp. 155-186 ◽  
Author(s):  
C. F. C. BRANDT ◽  
L.-M. LIN ◽  
J. F. VILLAS DA ROCHA ◽  
A. Z. WANG

Analytic spherically symmetric solutions of the Einstein field equations coupled with a perfect fluid and with self-similarities of the zeroth, first and second kinds, found recently by Benoit and Coley [Class. Quantum Grav.15, 2397 (1998)], are studied, and found that some of them represent gravitational collapse. When the solutions have self-similarity of the first (homothetic) kind, some of the solutions may represent critical collapse but in the sense that now the "critical" solution separates the collapse that forms black holes from the collapse that forms naked singularities. The formation of such black holes always starts with a mass gap, although the "critical" solution has homothetic self-similarity. The solutions with self-similarity of the zeroth and second kinds seem irrelevant to critical collapse. Yet, it is also found that the de Sitter solution is a particular case of the solutions with self-similarity of the zeroth kind, and that the Schwarzschild solution is a particular case of the solutions with self-similarity of the second kind with the index α=3/2.


2003 ◽  
Vol 12 (05) ◽  
pp. 913-924 ◽  
Author(s):  
S. G. GHOSH ◽  
D. W. DESHKAR

We investigate the occurrence and nature of naked singularities in the gravitational collapse of an adiabatic perfect fluid in self-similar higher dimensional space–times. It is shown that strong curvature naked singularities could occur if the weak energy condition holds. Its implication for cosmic censorship conjecture is discussed. Known results of analogous studies in four dimensions can be recovered.


2006 ◽  
Vol 15 (02) ◽  
pp. 131-152 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN ◽  
AN ZHONG WANG

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the second kind in (2 + 1) dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


Sign in / Sign up

Export Citation Format

Share Document