scholarly journals GRAVITATIONAL COLLAPSE OF SPHERICALLY SYMMETRIC PERFECT FLUID WITH KINEMATIC SELF-SIMILARITY

2002 ◽  
Vol 11 (02) ◽  
pp. 155-186 ◽  
Author(s):  
C. F. C. BRANDT ◽  
L.-M. LIN ◽  
J. F. VILLAS DA ROCHA ◽  
A. Z. WANG

Analytic spherically symmetric solutions of the Einstein field equations coupled with a perfect fluid and with self-similarities of the zeroth, first and second kinds, found recently by Benoit and Coley [Class. Quantum Grav.15, 2397 (1998)], are studied, and found that some of them represent gravitational collapse. When the solutions have self-similarity of the first (homothetic) kind, some of the solutions may represent critical collapse but in the sense that now the "critical" solution separates the collapse that forms black holes from the collapse that forms naked singularities. The formation of such black holes always starts with a mass gap, although the "critical" solution has homothetic self-similarity. The solutions with self-similarity of the zeroth and second kinds seem irrelevant to critical collapse. Yet, it is also found that the de Sitter solution is a particular case of the solutions with self-similarity of the zeroth kind, and that the Schwarzschild solution is a particular case of the solutions with self-similarity of the second kind with the index α=3/2.

2002 ◽  
Vol 11 (01) ◽  
pp. 113-124 ◽  
Author(s):  
JAIME F. VILLAS Da ROCHA

A large class of Type II fluid solutions to Einstein field equations in N-dimensional spherical spacetimes is found, wich includes most of the known solutions. A family of the generalized collapsing Vaidya solutions with homothetic self-similarity, parametrized by a constant λ, is studied, and found that when λ>λ c (N), the collapse always forms black holes, and when λ<λ c (N), it always forms naked singularities, where λ c (N) is function of the spacetime dimension N only.


2003 ◽  
Vol 12 (07) ◽  
pp. 1315-1332 ◽  
Author(s):  
C. F. C. BRANDT ◽  
M. F. A. DA SILVA ◽  
JAIME F. VILLAS DA ROCHA ◽  
R. CHAN

We study spacetimes of spherically symmetric anisotropic fluid with homothetic self-similarity. We find a class of solutions to the Einstein field equations by assuming that the tangential pressure of the fluid is proportional to its radial one and that the fluid moves along time-like geodesics. The energy conditions, and geometrical and physical properties of these solutions are studied and found that some of them represent gravitational collapse of an anisotropic fluid.


2012 ◽  
Vol 2012 ◽  
pp. 1-14
Author(s):  
Filipe C. Mena

We review recent results about the modelling of gravitational collapse to black holes in higher dimensions. The models are constructed through the junction of two exact solutions of the Einstein field equations: an interior collapsing fluid solution and a vacuum exterior solution. The vacuum exterior solutions are either static or containing gravitational waves. We then review the global geometrical properties of the matched solutions which, besides black holes, may include the existence of naked singularities and wormholes. In the case of radiating exteriors, we show that the data at the boundary can be chosen to be, in some sense, arbitrarily close to the data for the Schwarzschild-Tangherlini solution.


2019 ◽  
Vol 34 (20) ◽  
pp. 1950153 ◽  
Author(s):  
G. Abbas ◽  
Riaz Ahmed

We explore the problem of charged perfect fluid spherically symmetric gravitational collapse in f(R, T) gravity (R is Ricci scalar and T is the trace of energy–momentum tensor). We have taken the interior boundary of a star as spherically symmetric metric filled with the charged perfect fluid. In order to study charged perfect fluid collapse, we have investigated the exact solutions of the Maxwell–Einstein field equations solutions using the most simplified form for f(R, T) model f(R, T) = R + 2[Formula: see text]T, where [Formula: see text] is model parameter. This study involves the effects of charge as well as coupling parameter on collapse of a star. We studied the nature of trapped surfaces, apparent horizon and singularity structure in detail. It has been found that singularity is formed earlier than the apparent horizons, so the end state of gravitational collapse in this case is black hole.


2005 ◽  
Vol 14 (06) ◽  
pp. 1049-1061 ◽  
Author(s):  
R. CHAN ◽  
M. F. A. DA SILVA ◽  
J. F. VILLAS DA ROCHA ◽  
ANZHONG WANG

All the (2+1)-dimensional circularly symmetric solutions with kinematic self-similarity of the second kind to the Einstein-massless-scalar field equations are found and their local and global properties are studied. It is found that some of them represent gravitational collapse of a massless scalar field, in which black holes are always formed.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Haroldo C. D. Lima Junior ◽  
Luís C. B. Crispino ◽  
Pedro V. P. Cunha ◽  
Carlos A. R. Herdeiro

AbstractObtaining solutions of the Einstein field equations describing spinning compact bodies is typically challenging. The Newman–Janis algorithm provides a procedure to obtain rotating spacetimes from a static, spherically symmetric, seed metric. It is not guaranteed, however, that the resulting rotating spacetime solves the same field equations as the seed. Moreover, the former may not be circular, and thus expressible in Boyer–Lindquist-like coordinates. Amongst the variations of the original procedure, a modified Newman–Janis algorithm (MNJA) has been proposed that, by construction, originates a circular, spinning spacetime, expressible in Boyer–Lindquist-like coordinates. As a down side, the procedure introduces an ambiguity, that requires extra assumptions on the matter content of the model. In this paper we observe that the rotating spacetimes obtained through the MNJA always admit separability of the Hamilton–Jacobi equation for the case of null geodesics, in which case, moreover, the aforementioned ambiguity has no impact, since it amounts to an overall metric conformal factor. We also show that the Hamilton–Jacobi equation for light rays propagating in a plasma admits separability if the plasma frequency obeys a certain constraint. As an illustration, we compute the shadow and lensing of some spinning black holes obtained by the MNJA.


2014 ◽  
Vol 29 (34) ◽  
pp. 1450188 ◽  
Author(s):  
Uma Papnoi ◽  
Megan Govender ◽  
Sushant G. Ghosh

We study the intriguing analogy between gravitational dynamics of the horizon and thermodynamics for the case of nonstationary radiating spherically symmetric black holes both in four dimensions and higher dimensions. By defining all kinematical parameters of nonstationary radiating black holes in terms of null vectors, we demonstrate that it is possible to interpret the Einstein field equations near the apparent horizon in the form of a thermodynamical identity T dS = dE+P dV.


2006 ◽  
Vol 15 (07) ◽  
pp. 991-999 ◽  
Author(s):  
P. R. PEREIRA ◽  
M. F. A. DA SILVA ◽  
R. CHAN

We study space–times having spherically symmetric anisotropic fluid with self-similarity of zeroth kind. We find a class of solutions to the Einstein field equations by assuming a shear-free metric and that the fluid moves along time-like geodesics. The energy conditions, and geometrical and physical properties of the solutions are studied and we find that it can be considered as representing an accelerating universe. At the beginning all the energy conditions were fulfilled but beyond a certain time (a maximum geometrical radius) none of them is satisfied, characterizing a transition from normal matter (dark matter, baryon matter and radiation) to dark energy.


2014 ◽  
Vol 29 (19) ◽  
pp. 1430018 ◽  
Author(s):  
F. R. Klinkhamer

Certain exact solutions of the Einstein field equations over nonsimply-connected manifolds are reviewed. These solutions are spherically symmetric and have no curvature singularity. They provide a regularization of the standard Schwarzschild solution with a curvature singularity at the center. Spherically symmetric collapse of matter in ℝ4 may result in these nonsingular black-hole solutions, if quantum-gravity effects allow for topology change near the center or if nontrivial topology is already present as a remnant from a quantum spacetime foam.


2008 ◽  
Vol 17 (11) ◽  
pp. 2143-2158 ◽  
Author(s):  
F. I. M. PEREIRA ◽  
R. CHAN

Self-similar solutions of a collapsing perfect fluid and a massless scalar field with kinematic self-similarity of the first kind in 2+1 dimensions are obtained. The local and global properties of the solutions are studied. It is found that some of them represent gravitational collapse, in which black holes are always formed, and some may be interpreted as representing cosmological models.


Sign in / Sign up

Export Citation Format

Share Document