scholarly journals Symmetry Structure of the Period-Doubling Bifurcation of the Period-2, Step-1 Accelerator Mode in the Standard Map

2000 ◽  
Vol 104 (4) ◽  
pp. 723-732 ◽  
Author(s):  
C. Murakami ◽  
W. Murakami ◽  
Y. H. Ichikawa
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yingying Jiang ◽  
Wendi Wang

A new model which allows both the effect of partial selfing selection and an exponential function of the expected payoff is considered. This combines ideas from genetics and evolutionary game theory. The aim of this work is to study the effects of partial selfing selection on the discrete dynamics of population evolution. It is shown that the system undergoes period doubling bifurcation, saddle-node bifurcation, and Neimark-Sacker bifurcation by using center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as the period-3, 6 orbits, cascade of period-doubling bifurcation in period-2, 4, 8, and the chaotic sets. These results reveal richer dynamics of the discrete model compared with the model in Tao et al., 1999. The analysis and results in this paper are interesting in mathematics and biology.


Author(s):  
Yeyin Xu ◽  
Albert C.J. Luo

Abstract In this paper, a bifurcation tree of period-1 to period-8 motions in a nonlinear Jeffcott rotor system is obtained through the discrete mapping method. The bifurcations and stability of periodic motions on the bifurcation tree are discussed. The quasi-periodic motions on the bifurcation tree are caused by two (2) Neimark bifurcations of period-1 motions, one (1) Neimark bifurcation of period-2 motions and four (4) Neimark bifurcations of period-4 motions. The specific quasi-periodic motions are mainly based on the skeleton of the corresponding periodic motions. One stable and one unstable period-doubling bifurcations exist for the period-1, period-2 and period-4 motions. The unstable period-doubling bifurcation is from an unstable period-m motion to an unstable period-2m motion, and the unstable period-m motion becomes stable. Such an unstable period-doubling bifurcation is the 3rd source pitchfork bifurcation. Periodic motions on the bifurcation tree are simulated numerically, and the corresponding harmonic amplitudes and phases are presented for harmonic effects on periodic motions in the nonlinear Jeffcott rotor system. Such a study gives a complete picture of periodic and quasi-periodic motions in the nonlinear Jeffcott rotor system in the specific parameter range. One can follow the similar procedure to work out the other bifurcation trees in the nonlinear Jeffcott rotor systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-21
Author(s):  
Huayong Zhang ◽  
Ju Kang ◽  
Tousheng Huang ◽  
Xuebing Cong ◽  
Shengnan Ma ◽  
...  

Complex dynamics of a four-species food web with two preys, one middle predator, and one top predator are investigated. Via the method of Jacobian matrix, the stability of coexisting equilibrium for all populations is determined. Based on this equilibrium, three bifurcations, i.e., Hopf bifurcation, Hopf-Hopf bifurcation, and period-doubling bifurcation, are analyzed by center manifold theorem, bifurcation theorem, and numerical simulations. We reveal that, influenced by the three bifurcations, the food web can exhibit very complex dynamical behaviors, including limit cycles, quasiperiodic behaviors, chaotic attractors, route to chaos, period-doubling cascade in orbits of period 2, 4, and 8 and period 3, 6, and 12, periodic windows, intermittent period, and chaos crisis. However, the complex dynamics may disappear with the extinction of one of the four populations, which may also lead to collapse of the food web. It suggests that the dynamical complexity and food web stability are determined by the food web structure and existing populations.


2001 ◽  
Vol 106 (5) ◽  
pp. 909-915 ◽  
Author(s):  
C. Murakami ◽  
W. Murakami ◽  
K.-i. Hirose ◽  
Y. H. Ichikawa

Author(s):  
Albert C. J. Luo

Abstract Stability and bifurcation conditions for the asymmetric, periodic motion of a horizontal impact damper under a periodic excitation are developed through four mappings for two switch-planes relative to discontinuities. Period-doubling bifurcation for equispaced motion does not occur, but the asymmetric period-1 motions change to the asymmetric, period-2 ones through a period doubling bifurcation. A numerical prediction for equispaced to chaotic motions is completed. The numerical and analytical predictions of the periodic motion are in very good agreement. The asymmetric, periodic motions are also simulated.


Author(s):  
Eman Moustafa ◽  
Abdel-Azem Sobaih ◽  
Belal Abozalam ◽  
Amged Sayed A. Mahmoud

AbstractChaotic phenomena are observed in several practical and scientific fields; however, the chaos is harmful to systems as they can lead them to be unstable. Consequently, the purpose of this study is to analyze the bifurcation of permanent magnet direct current (PMDC) motor and develop a controller that can suppress chaotic behavior resulted from parameter variation such as the loading effect. The nonlinear behaviors of PMDC motors were investigated by time-domain waveform, phase portrait, and Floquet theory. By varying the load torque, a period-doubling bifurcation appeared which in turn led to chaotic behavior in the system. So, a fuzzy logic controller and developing the Floquet theory techniques are applied to eliminate the bifurcation and the chaos effects. The controller is used to enhance the performance of the system by getting a faster response without overshoot or oscillation, moreover, tends to reduce the steady-state error while maintaining its stability. The simulation results emphasize that fuzzy control provides better performance than that obtained from the other controller.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 57
Author(s):  
Juan-Guillermo Muñoz ◽  
Fabiola Angulo ◽  
David Angulo-Garcia

The boost-flyback converter is a DC-DC step-up power converter with a wide range of technological applications. In this paper, we analyze the boost-flyback dynamics when controlled via a modified Zero-Average-Dynamics control technique, hereby named Zero-Average-Surface (ZAS). While using the ZAS strategy, it is possible to calculate the duty cycle at each PWM cycle that guarantees a desired stable period-1 solution, by forcing the system to evolve in such way that a function that is constructed with strategical combination of the states over the PWM period has a zero average. We show, by means of bifurcation diagrams, that the period-1 orbit coexists with a stable period-2 orbit with a saturated duty cycle. While using linear stability analysis, we demonstrate that the period-1 orbit is stable over a wide range of parameters and it loses stability at high gains and low loads via a period doubling bifurcation. Finally, we show that, under the right choice of parameters, the period-1 orbit controller with ZAS strategy satisfactorily rejects a wide range of disturbances.


Author(s):  
Ruigui Pan ◽  
Huw G. Davies

Abstract Nonstationary response of a two-degrees-of-freedom system with quadratic coupling under a time varying modulated amplitude sinusoidal excitation is studied. The nonlinearly coupled pitch and roll ship model is based on Nayfeh, Mook and Marshall’s work for the case of stationary excitation. The ship model has a 2:1 internal resonance and is excited near the resonance of the pitch mode. The modulated excitation (F0 + F1 cos ωt) cosQt is used to model a narrow band sea-wave excitation. The response demonstrates a variety of bifurcations, loss of stability, and chaos phenomena that are not present in the stationary case. We consider here the periodically modulated response. Chaotic response of the system is discussed in a separate paper. Several approximate solutions, under both small and large modulating amplitudes F1, are obtained and compared with the exact one. The stability of an exact solution with one mode having zero amplitude is studied. Loss of stability in this case involves either a rapid transition from one of two stable (in the stationary sense) branches to another, or a period doubling bifurcation. From Floquet theory, various stability boundary diagrams are obtained in F1 and F0 parameter space which can be used to predict the various transition phenomena and the period-2 bifurcations. The study shows that both the modulation parameters F1 and ω (the modulating frequency) have great effect on the stability boundaries. Because of the modulation, the stable area is greatly expanded, and the stationary bifurcation point can be exceeded without loss of stability. Decreasing ω can make the stability boundary very complicated. For very small ω the response can make periodic transitions between the two (pseudo) stable solutions.


Sign in / Sign up

Export Citation Format

Share Document