scholarly journals Noisy Sine-Circle Map as a Model of Chaotic Phase Synchronization

2013 ◽  
Vol 161 (0) ◽  
pp. 199-203 ◽  
Author(s):  
T. Horita ◽  
T. Yamada ◽  
H. Fujisaka
2021 ◽  
Vol 376 (1835) ◽  
pp. 20200333 ◽  
Author(s):  
Dobromir Dotov ◽  
Laurel J. Trainor

Rhythms are important for understanding coordinated behaviours in ecological systems. The repetitive nature of rhythms affords prediction, planning of movements and coordination of processes within and between individuals. A major challenge is to understand complex forms of coordination when they differ from complete synchronization. By expressing phase as ratio of a cycle, we adapted levels of the Farey tree as a metric of complexity mapped to the range between in-phase and anti-phase synchronization. In a bimanual tapping task, this revealed an increase of variability with ratio complexity, a range of hidden and unstable yet measurable modes, and a rank-frequency scaling law across these modes. We use the phase-attractive circle map to propose an interpretation of these findings in terms of hierarchical cross-frequency coupling (CFC). We also consider the tendency for small-integer attractors in the single-hand repeated tapping of three-interval rhythms reported in the literature. The phase-attractive circle map has wider basins of attractions for such ratios. This work motivates the question whether CFC intrinsic to neural dynamics implements low-level priors for timing and coordination and thus becomes involved in phenomena as diverse as attractor states in bimanual coordination and the cross-cultural tendency for musical rhythms to have simple interval ratios. This article is part of the theme issue ‘Synchrony and rhythm interaction: from the brain to behavioural ecology’.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2286
Author(s):  
Yutaka Hara ◽  
Yoshifumi Jodai ◽  
Tomoyuki Okinaga ◽  
Masaru Furukawa

To investigate the optimum layouts of small vertical-axis wind turbines, a two-dimensional analysis of dynamic fluid body interaction is performed via computational fluid dynamics for a rotor pair in various configurations. The rotational speed of each turbine rotor (diameter: D = 50 mm) varies based on the equation of motion. First, the dependence of rotor performance on the gap distance (gap) between two rotors is investigated. For parallel layouts, counter-down (CD) layouts with blades moving downwind in the gap region yield a higher mean power than counter-up (CU) layouts with blades moving upwind in the gap region. CD layouts with gap/D = 0.5–1.0 yield a maximum average power that is 23% higher than that of an isolated single rotor. Assuming isotropic bidirectional wind speed, co-rotating (CO) layouts with the same rotational direction are superior to the combination of CD and CU layouts regardless of the gap distance. For tandem layouts, the inverse-rotation (IR) configuration shows an earlier wake recovery than the CO configuration. For 16-wind-direction layouts, both the IR and CO configurations indicate similar power distribution at gap/D = 2.0. For the first time, this study demonstrates the phase synchronization of two rotors via numerical simulation.


2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Dang Minh Nguyen ◽  
Muttikulangara Swaminathan Sanathanan ◽  
Jianmin Miao ◽  
David Fernandez Rivas ◽  
Claus-Dieter Ohl

2021 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
Wan-peng Zhang ◽  
Hong Wu ◽  
Wei-feng Zhou ◽  
Ying-xin Zhao ◽  
Zhi-yang Liu ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 159
Author(s):  
Almudena González ◽  
Manuel Santapau ◽  
Antoni Gamundí ◽  
Ernesto Pereda ◽  
Julián J. González

The present work aims to demonstrate the hypothesis that atonal music modifies the topological structure of electroencephalographic (EEG) connectivity networks in relation to tonal music. To this, EEG monopolar records were taken in musicians and non-musicians while listening to tonal, atonal, and pink noise sound excerpts. EEG functional connectivities (FC) among channels assessed by a phase synchronization index previously thresholded using surrogate data test were computed. Sound effects, on the topological structure of graph-based networks assembled with the EEG-FCs at different frequency-bands, were analyzed throughout graph metric and network-based statistic (NBS). Local and global efficiency normalized (vs. random-network) measurements (NLE|NGE) assessing network information exchanges were able to discriminate both music styles irrespective of groups and frequency-bands. During tonal audition, NLE and NGE values in the beta-band network get close to that of a small-world network, while during atonal and even more during noise its structure moved away from small-world. These effects were attributed to the different timbre characteristics (sounds spectral centroid and entropy) and different musical structure. Results from networks topographic maps for strength and NLE of the nodes, and for FC subnets obtained from the NBS, allowed discriminating the musical styles and verifying the different strength, NLE, and FC of musicians compared to non-musicians.


Sign in / Sign up

Export Citation Format

Share Document