scholarly journals Measurements of Particle Production in pp Collisions in the Forward Region at the LHC

2012 ◽  
Vol 193 ◽  
pp. 193-196
Author(s):  
Raluca Mureşan
2019 ◽  
Vol 208 ◽  
pp. 11006 ◽  
Author(s):  
Akinori Ohsawa ◽  
Edison H. Shibuya ◽  
Masanobu Tamada

The main features of the rapidity density distribution of the produced hadrons in multiple particle production in nucleon collisions are; (a) the distribution in the forward region (ȳ ≥ 0) has a shape similar to the Fermi distribution, (b) the distribution in the most forward region reaches almost the maximum rapidity ymax = ln(√s/M) (M : nucleon mass), and (c) the shrinkage of the distribution from the maximum rapidity increases with the incident energy (i.e. violation of Feynman scaling law). These features are possible to be described by the assumptions that; (1) a fireball of the gas (made of nuclear matter, with the temperature Ti and with the shape of the incident nucleon with Lorentz contraction) is produced in the collision, (2) the fireball makes the adiabatic expansion, and (3) the constituent particles of the gas obey the Maxwell-Boltzmann distribution of the temperature Tf in the final state.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
J. Adam ◽  
◽  
D. Adamová ◽  
M. M. Aggarwal ◽  
G. Aglieri Rinella ◽  
...  

This document corrects two errors in Eur. Phys. J. C77 (2017) no. 8, 56: the incorrect referencing of Fig. 1 labels in three paragraphs in the results section and a missing acknowledgements section.


2011 ◽  
Vol 2011 (5) ◽  
Author(s):  
V. Khachatryan ◽  
◽  
A. M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Emily Nurse ◽  
Sercan Sen

In proton-proton (pp) collisions, any process involves exchanging the vacuum quantum numbers is known as diffractive process. A diffractive process with no largeQ2is called soft diffractive process. The diffractive processes are important for understanding nonperturbative QCD effects and they also constitute a significant fraction of the total pp cross section. The diffractive events are typically characterized by a region of the detector without particles, known as a rapidity gap. In order to observe diffractive events in this way, we consider the pseudorapidity acceptance in the forward region of the ATLAS and CMS detectors at the Large Hadron Collider (LHC) and discuss the methods to select soft diffractive dissociation for pp collisions ats=7 TeV. It is shown that, in the limited detector rapidity acceptance, it is possible to select diffractive dissociation events by requiring a rapidity gap in the event; however, without using forward detectors, it seems not possible to fully separate single and double diffractive dissociation events. The Zero Degree Calorimeters can be used to distinguish the type of the diffractive processes up to a certain extent.


2016 ◽  
Vol 40 ◽  
pp. 1660024
Author(s):  
Christopher J. Dilks

Longitudinally polarized [Formula: see text] scattering experiments provide access to gluon polarization via measurement of the double helicity asymmetry, [Formula: see text]. At the completion of the 2013 RHIC running period, a significant dataset of [Formula: see text]s corresponding to an integrated luminosity of 46 [Formula: see text] (2012) and 8 [Formula: see text] (2013) produced from polarized [Formula: see text] scattering at [Formula: see text] GeV with an average beam polarization of approximately [Formula: see text] was acquired. The [Formula: see text] kinematics were measured via isolation cones by the STAR Forward Meson Spectrometer, an electromagnetic calorimeter covering a forward pseudorapidity range of [Formula: see text]. The asymmetric [Formula: see text] subprocess becomes more dominant in this forward region than in the midrapidity region; furthermore, asymmetry measurements in the forward region are sensitive to low-[Formula: see text] gluons. Progress on [Formula: see text] determined from forward [Formula: see text] events, complementing previous midrapidity measurements, are presented.


Sign in / Sign up

Export Citation Format

Share Document