Incorporation of groundwater modelling in the sustainable management of groundwater resources

2002 ◽  
Vol 193 (1) ◽  
pp. 83-90 ◽  
Author(s):  
P. Hulme ◽  
S. Fletcher ◽  
L. Brown
Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3359
Author(s):  
Mohamed Abdelfattah ◽  
Heba Abdel-Aziz Abu-Bakr ◽  
Ahmed Gaber ◽  
Mohamed H. Geriesh ◽  
Ashraf Y. Elnaggar ◽  
...  

Recently, groundwater resources in Egypt have become one of the important sources to meet human needs and activities, especially in coastal areas such as the western area of Port Said, where seawater desalination cannot be used due to the problem of oil spill and the reliance upon groundwater resources. Thus, the purpose of the study is the sustainable management of the groundwater resources in the coastal aquifer entailing groundwater abstraction. In this regard, the Visual MODFLOW and SEAWAT codes were used to simulate groundwater flow and seawater intrusion in the study area for 50 years (from 2018 to 2068) to predict the drawdown, as well as the salinity distribution due to the pumping of the wells on the groundwater coastal aquifer based on field investigation data and numerical modelling. Different well scenarios were used, such as the change in well abstraction rate, the different numbers of abstraction wells, the spacing between the abstraction wells and the change in screen depth in abstraction. The recommended scenarios were selected after comparing the predicted drawdown and salinity results for each scenario to minimize the seawater intrusion and preserve these resources from degradation.


2008 ◽  
pp. 473-480 ◽  
Author(s):  
J. Guttman ◽  
E. Salameh ◽  
E. Rosenthal ◽  
AR. Tamimi ◽  
A. Flexer

Author(s):  
Andrzej SADURSKI ◽  
Elzbieta Przytuła

The term groundwater resources was introduced to hydrogeology from economic geology similarly to the resources of ore bodies almost a hundred years ago. It has been used for the need of physical planning, investment in new water intakes, and water management. Discussion on the groundwater resources started in the past after implementation of new methods of their evaluation, e.g. analytical approaches, and physical and then numerical modelling techniques. The ecological aspects of water demand, indicated in the Water Framework Directive, oblige the EU countries to introduce a new idea for the estimation of groundwater resources. This idea is also presented in the water management plans for river catchment areas. Distribution of available groundwater resources in the country and comparison with the groundwater exploitation is the background of proper, sustainable management of its resources. Available groundwater resources of the country, understood as a total amount of disposable and prospective groundwater resources, is 36.4 million m3/day (as of December 31, 2015), including 21.4 million m3/day of disposable resources, and 15 million m3/day of estimated prospective resources.


2022 ◽  
Author(s):  
Omeed H. Al-Kakey ◽  
◽  
Arsalan A. Othman ◽  
Broder J. Merkel ◽  
◽  
...  

Excessive extraction, uncontrolled withdrawal of groundwater, and unregulated practices have caused severe depletion of groundwater resources in the Erbil basin, Iraq. This situation has had a number of negative consequences on human settlement, agricultural activities, clean water supply, and the environment. Runoff harvesting and artificial groundwater recharge play a significant role in the sustainable management of water resources, particularly in arid and semi-arid regions. This study aims to: (1) delineate groundwater recharge zones using multiple thematic layers that control the groundwater recharge process, and (2) identify prospective sites and structures to perform artificial groundwater recharge. In order to generate a potential map for groundwater recharge zones, seven thematic layers are considered in this study, namely, topographic position index, geomorphology, lithology, land cover, slope, drainage-length density, and lineament-length density. After that, the analytic hierarchy process was applied to weight, rank, and reclassify these seven thematic layers. All maps are then integrated within the ArcGIS environment for delineating groundwater recharge zones. Accordingly, the resulting map categorizes the study area into five zones: extremely high, high, moderate, low, and extremely low potential for groundwater recharge. As expected, areas along the Greater Zab river show the highest possibility for groundwater recharge. Likewise, rugged eastern hills demonstrate an encouraging capacity for artificial aquifer recharge, whereas the least effective area is represented by built-up land. Based on the generated map, two dams are proposed as promising artificial recharge structures for harvesting runoff water east of Erbil city. Lastly, the resulting map of the potential groundwater recharge zones is verified using static water level data, where the coefficient of determination (R2) achieved a satisfactory result (0.73). These findings provide crucial evidence for implementing a sustainable management plan of surface and groundwater resources. The applied method is eventually valid for regions where appropriate and adequate field data availability is a serious issue.


Author(s):  
Stephen Foster ◽  
John Chilton

This chapter first provides a concise account of the basic principles and concepts underlying scientific groundwater management, and it then both summarises the policy approach to developing an adaptive scheme of management and protection for groundwater resources that is appropriately integrated across relevant sectors and assesses the governance needs, roles and planning requirements to implement the selected policy approach.


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
B. Croke ◽  
N. Herron ◽  
P. Pavelic ◽  
S. Ahmed ◽  
V. R. Reddy ◽  
...  

Watershed Development (WSD) programs in rainfed dryland agriculture in India have been introduced in an effort to promote more sustainable management of the surface and groundwater resources, and to improve the livelihoods of farmers. This paper outlines the planned research for a project exploring the impacts of WSD at the meso-scale (~100 km2). The aim of the project is to develop and apply integrated models to assess cost effectiveness and water-related equity outcomes of stakeholder defined WSD scenarios; and to integrate and apply, in collaboration with project partners, the knowledge arising from the project at local, state and national policy levels.


Sign in / Sign up

Export Citation Format

Share Document