scholarly journals Identifying potential sites for artificial groundwater recharge using GIS and AHP techniques: A case study of Erbil basin, Iraq

2022 ◽  
Author(s):  
Omeed H. Al-Kakey ◽  
◽  
Arsalan A. Othman ◽  
Broder J. Merkel ◽  
◽  
...  

Excessive extraction, uncontrolled withdrawal of groundwater, and unregulated practices have caused severe depletion of groundwater resources in the Erbil basin, Iraq. This situation has had a number of negative consequences on human settlement, agricultural activities, clean water supply, and the environment. Runoff harvesting and artificial groundwater recharge play a significant role in the sustainable management of water resources, particularly in arid and semi-arid regions. This study aims to: (1) delineate groundwater recharge zones using multiple thematic layers that control the groundwater recharge process, and (2) identify prospective sites and structures to perform artificial groundwater recharge. In order to generate a potential map for groundwater recharge zones, seven thematic layers are considered in this study, namely, topographic position index, geomorphology, lithology, land cover, slope, drainage-length density, and lineament-length density. After that, the analytic hierarchy process was applied to weight, rank, and reclassify these seven thematic layers. All maps are then integrated within the ArcGIS environment for delineating groundwater recharge zones. Accordingly, the resulting map categorizes the study area into five zones: extremely high, high, moderate, low, and extremely low potential for groundwater recharge. As expected, areas along the Greater Zab river show the highest possibility for groundwater recharge. Likewise, rugged eastern hills demonstrate an encouraging capacity for artificial aquifer recharge, whereas the least effective area is represented by built-up land. Based on the generated map, two dams are proposed as promising artificial recharge structures for harvesting runoff water east of Erbil city. Lastly, the resulting map of the potential groundwater recharge zones is verified using static water level data, where the coefficient of determination (R2) achieved a satisfactory result (0.73). These findings provide crucial evidence for implementing a sustainable management plan of surface and groundwater resources. The applied method is eventually valid for regions where appropriate and adequate field data availability is a serious issue.

2020 ◽  
Author(s):  
Emanuel Zarate ◽  
Alan MacDonald ◽  
Russell Swift ◽  
Jonathan Chambers ◽  
Japhet Kashaigili ◽  
...  

<p>Drylands (semi-arid/arid regions) represent >35% of the Earth’s surface, support a population of around 2 billion people, and are forecast to be increasingly water stressed in coming decades. Groundwater is the most reliable source of water in drylands, and it is likely that the structure and hydraulic properties of superficial geology play a crucial role in controlling groundwater recharge in these regions.  However, the spatio-temporal hydrogeological controls on the rates of groundwater recharge, and their sensitivity to environmental change are poorly resolved.</p><p>In the Makutapora groundwater basin (Tanzania), an analogue for semi-arid tropical areas underlain by weathered and fractured crystalline rock aquifers, we conducted a series of geophysical surveys using Electrical Resistivity Tomography (ERT) and frequency domain electromagnetic methods (FDEM). Using these data, in conjunction with borehole logs, we identify and delineate five major lithological units in the basin: 1) Superficial deposits of coarse sand (>200 Ω m) 2) Highly conductive smectitic clays (1-10 Ω m) 3) Decomposed pedolitic soils (30-100 Ω m) 4) Weathered saprolite (100-700 Ω m) and 5) Fractured granitic basement (>700 Ω m). We also identify 10-50m wide zones of normal faulting extending across the basin and cutting through these units, interpreted with the aid of analysis of a digital elevation model alongside the geophysics data.</p><p>These results are combined with existing long-term hydrological and hydrogeological records to build conceptual models of the processes governing recharge. We hypothesise that: 1) Zones of active faulting provide permeable pathways enabling greater recharge to occur; 2) Superficial sand deposits may act as collectors and stores that slowly feed recharge into these fault zones; 3) Windows within layers of smectitic clay underlying ephemeral streams may provide pathways for focused recharge via transmission losses; and 4) Overbank flooding during high-intensity precipitation events that inundate a greater area of the basin increases the probability of activating such permeable pathways.</p><p>Our results suggest that configurations of superficial geology may play a crucial role in controlling patterns, rates and timing of groundwater recharge in dryland settings. They also provide a physical basis to improve numerical models of groundwater recharge in drylands, and a conceptual framework to evaluate strategies (e.g. Managed Aquifer Recharge) to artificially enhance the availability of groundwater resources in these regions.</p>


2020 ◽  
Vol 20 (4) ◽  
pp. 1534-1545
Author(s):  
K. Hägg ◽  
T. Persson ◽  
O. Söderman ◽  
K. M. Persson

Abstract The natural organic matter (NOM) and color content of surface waters are increasingly becoming an issue for artificial groundwater recharge plants. Water from Lake Bolmen, in southern Sweden, had in 2017 an annual average NOM and color content of 8.6 mg/L total organic carbon (TOC) and 57 mg Pt/L respectively, and values ranging from 7.8 to 9.6 mg/L TOC and 50–70 mg Pt/L. Since water from Lake Bolmen will be used at Vomb Water Works, an artificial groundwater recharge plant, the high NOM-content of Lake Bolmen must be reduced prior to aquifer recharge. From experiences of full-scale operations of chemical flocculation, lamella sedimentation and rapid sand filtration using ferric chloride, three different pre-treatment methods were proposed; conventional precipitation, stand-alone direct precipitation before ultrafiltration (UF), and conventional precipitation with ultrafiltration after lamella sedimentation. In this study, a hollow fiber membrane (MWCO of 150 kDa) was used in different configurations during a 15 months pilot trial. The results showed the possibility to reduce NOM equal to conventional precipitation when a stable net-flux of 40 and 70 L/(m2· h) was used for direct precipitation before UF and conventional precipitation with UF, respectively. This paper presents these treatment methods and evaluates their viability as full-scale treatment steps.


2021 ◽  
Author(s):  
Eleftheria Kalaitzaki ◽  
Emmanouil Varouchakis ◽  
Gerald Augusto Corzo Perez ◽  
Vitali Diaz ◽  
Olianna Akoumianaki ◽  
...  

<p>In the Mediterranean region, climatic variations in conjunction to intensive agriculture deteriorates groundwater resources which are over-exploited to cover irrigation demands. A characteristic example is Messara Basin in the island of Crete, Greece. This work presents an integrated suitability assessment study for potential aquifer recharge that considers the availability of water resources, hydro-geological and geomorphological characteristics, climatic scenarios, soil properties and suitability, and socioeconomic analysis under the framework of a suitable aquifer recharge technique.</p><p>The most suitable technique for planning the aquifer recharge was selected according to the area characteristics. The spreading method was assessed as the most suitable technique based on the area characteristics that should typically have a source of excess water available nearby, be located in a relatively flat area with permeable soils and be underlined by an unconfined aquifer. A multi-criteria decision analysis method was applied to identify suitable sites for implementing aquifer recharge type spreading method. The methodology is based on a multicriteria matrix developed in accordance to a relative optimization (weighting) method in terms of hydrogeological and geomorphological criteria, and water availability (reservoir, river). Criteria combining a high relevance and high data availability, and providing unique information, selected to assess the suitability of aquifer recharge in Messara basin such as slope, land use, hydrogeology, rainfall, groundwater level, soil texture and distance to source water.</p><p>All the aforementioned factors were separately studied and analyzed and then were combined under the principles of the spreading method to provide by means of spatial maps the most appropriate locations in the study basin.</p><p>The outcome of this work is a simple framework methodology for selecting the most suitable recharge locations of the underlying aquifers and to demonstrate its socioeconomic and environmental advantages. The results of this work will assist local authorities to consider the applicability of aquifer recharge in the Messara valley while it consists a framework for efficient planning of similar applications in other Mediterranean regions.</p><p> </p><p>Acknowledgments</p><p>This work was implemented in the framework of the research project Uncertainty-aware intervention design for Mediterranean aquifer recharge. The project: "Uncertainty-aware intervention design for Mediterranean aquifer recharge benefits from the support of the Prince Albert II foundation". http://www.fpa2.org</p><p> </p><p>References</p><p>Special water secretariat of Greece, 2017. Integrated Management Plans of the Greek Watersheds, Ministry of Environment & Energy, Athens.</p><p>Varouchakis, E.A., 2016. Integrated Water Resources Analysis at Basin Scale: A Case Study in Greece. J. Irrig. Drain. E-ASCE 142(3), 05015012. DOI:10.1061/(ASCE)IR.1943-4774.0000966</p>


Author(s):  
G. Jin ◽  
Y. Shimizu ◽  
S. Onodera ◽  
M. Saito ◽  
K. Matsumori

Abstract. Clarifying the variations of groundwater recharge response to a changing non-stationary hydrological process is important for efficiently managing groundwater resources, particularly in regions with limited precipitation that face the risk of water shortage. However, the rate of aquifer recharge is difficult to evaluate in terms of large annual-variations and frequency of flood events. In our research, we attempt to simulate related groundwater recharge processes under variable climate conditions using the SWAT Model, and validate the groundwater recharge using the Hydrus Model. The results show that annual average groundwater recharge comprised approximately 33% of total precipitation, however, larger variation was found for groundwater recharge and surface runoff compared to evapotranspiration, which fluctuated with annual precipitation variations. The annual variation of groundwater resources is shown to be related to precipitation. In spatial variations, the upstream is the main surface water discharge area; the middle and downstream areas are the main groundwater recharge areas. Validation by the Hydrus Model shows that the estimated and simulated groundwater levels are consistent in our research area. The groundwater level shows a quick response to the groundwater recharge rate. The rainfall intensity had a great impact on the changes of the groundwater level. Consequently, it was estimated that large spatial and temporal variation of the groundwater recharge rate would be affected by precipitation uncertainty in future.


2019 ◽  
Vol 48 (1) ◽  
pp. 43-61
Author(s):  
Tanya Vasileva

Groundwater resources on the territory of Bulgaria are unevenly distributed in both spatial and temporal aspects. The effective usage of these valuable assets is of paramount importance, since any over-exploitation would eventually lead to their depletion. Remote sensing data and satellite images have increasingly been used in groundwater exploration and management. An integrated approach was applied in the present study in order to delineate potential groundwater recharge zones on the territory of Bulgaria. Data from various sources were used to prepare different thematic layers. These layers were then transformed into raster data of 1×1 km. Lineament and drainage density maps of the research area were made with the help of GIS technology. In addition, a map was made for the annual total precipitation for the period from 1931 to 1985. DEM (Digital Elevation Model) data on a global scale at 90 m horizontal resolution were used for the slope analysis. A groundwater potential map was produced, which integrates several thematic maps, such as annual rainfall, geology, lineament density, land use, slope, soils, and drainage density. The thematic maps were then converted into a raster graphic format in order to be easily integrated into a GIS platform. The raster maps of these factors were then allocated a fixed score and weight-computed. The weights of those factors contributing to the groundwater recharge were derived by using the following components: geological map, lineament-length density map, land cover data base, soil data base, drainage-length density map, and slope gradient map. Subjective weights were assigned to the respective thematic layers, and they were overlaid in a GIS platform for the identification of potential groundwater recharge zones within the study area. These potential recharge zones were then categorized as being very good, good, moderate, poor, and very poor.


2018 ◽  
Vol 7 (3.10) ◽  
pp. 45
Author(s):  
T Subramani ◽  
K Rokith

The groundwater is taken into consideration because the foremost source of ninety nine % of all retrievable clean water, optimization of its utilization could be very essential. Identity of potential zones for groundwater recharge has end up an essential occasion to fill up the groundwater sources. The recharge ability is ruled by various functions of surface, subsurface and hydro meteorological parameters. Remote sensing approach is observed to be very powerful device for the combination of various functions of these elements. In this work, an try has been made to identify groundwater recharge potential zones in Kollimalai hill. Namakkal district which is located in  Tamilnadu , India. Evaluation (WIOA) changed into done in this study using the software Arc GIS by using integrating the thematic layers of geology, soil, geomorphology, land use/ land cowl geology, geomorphology, lineament, land use/ land cowl, groundwater degree and slope, rainfall. The groundwater potentials were described as suitable, moderately suitable and unsuitable.   


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 184
Author(s):  
Iolanda Borzì ◽  
Brunella Bonaccorso

Groundwater is a major source of drinking water worldwide, often considered more reliable than surface water and more accessible. Nowadays, there is wide recognition by the scientific community that groundwater resources are under threat from overexploitation and pollution. Furthermore, frequent and prolonged drought periods due to climate change can seriously affect groundwater recharge. For an appropriate and sustainable management of water systems supplied by springs and/or groundwater withdrawn from aquifers through drilling wells or drainage galleries, the need arises to properly quantify groundwater resources availability, mainly at the monthly scale, as groundwater recharge is influenced by seasonality, especially in the Mediterranean areas. Such evaluation is particularly important for ungauged groundwater bodies. This is the case of the aquifer supplying the Santissima Aqueduct, the oldest water supply infrastructure of the city of Messina in Sicily (Southern Italy), whose groundwater flows are measured only occasionally through spring water sampling at the water abstraction plants. Moreover, these plants are barely maintained because they are difficult to reach. In this study, groundwater recharge assessment for the Santissima Aqueduct is carried out through a GIS-based inverse hydrogeological balance methodology. Although this approach was originally designed to assess aquifer recharge at the annual scale, wherever a model conceptualization of the groundwater system was hindered by the lack of data, in the present study some changes are proposed to adjust the model to the monthly scale. In particular, the procedure for evapotranspiration assessment is based on the Global Aridity Index within the Budyko framework. The application of the proposed methodology shows satisfactory results, suggesting that it can be successfully applied for groundwater resources estimation in a context where monthly information is relevant for water resources planning and management.


2021 ◽  
Vol 11 (12) ◽  
Author(s):  
Md. Iquebal Hossain ◽  
Md. Niamul Bari ◽  
Md. Shafi Uddin Miah

AbstractThis study focuses on the Barind tract, a drought prone area situated in the north-west region of Bangladesh where inadequate rainfall and limited surface water have created high dependence on groundwater for irrigation and other purposes, leading to significant declines in groundwater level. Managed aquifer recharge (MAR) offers a potential solution to restore groundwater levels. This study sets out to identify the opportunities and challenges for implementing MAR in the Barind tract. To accomplish this aim, different data sets including bore log lithology, rainfall, groundwater levels, information about re-excavated ponds, dighis, kharies, beels, check dams, rubber dams, dug wells and other necessary information were collected from the Barind Multipurpose Development Authority (BMDA) and other sources and analyzed. Major opportunities for MAR are identified for about 2000 km of re-excavated kharies (canals) containing about 750 check dams, more than 3000 re-excavated ponds, a number of beels (comparatively large marshes) and other water bodies which are used to conserve runoff storm water for supplementary irrigation. The conserved water can be used for groundwater recharge and subsequently abstracted for irrigation. Furthermore, roof-top rain water from buildings can also be used for groundwater recharge purposes. In contrast, the major challenges include the high turbidity of storm water runoff leading to clogging of MAR structures, inadequacy of conventional direct surface methods of recharge due to the presence of a 15 m or more thick upper clay layer with limited percolation capacity, and lack of practical knowledge on MAR. Therefore, overcoming the challenges for MAR application is a prerequisite to maximize the opportunities from MAR that can support the sustainable use of groundwater resources.


Sign in / Sign up

Export Citation Format

Share Document