scholarly journals Tabelliscolex (Cricocosmiidae: Palaeoscolecidomorpha) from the early Cambrian Chengjiang Biota, and the evolution of seriation in Ecdysozoa

2021 ◽  
pp. jgs2021-060
Author(s):  
Xiaomei Shi ◽  
Richard J. Howard ◽  
Gregory D. Edgecombe ◽  
Xianguang Hou ◽  
Xiaoya Ma

Cricocosmiidae is a clade of palaeoscolecid-like worms from the Chengjiang Biota, China (Cambrian Stage 3). In contrast to palaeoscolecids sensu stricto, which exhibit tessellating micro-plate trunk ornamentation, cricocosmiids possess larger, serially repeated sets of trunk sclerites bearing resemblance to lobopodian trunk sclerites (e.g., Microdictyon spp.). Cricocosmiidae were therefore proposed as stem-group Panarthropoda in some studies but are recovered as stem-group Priapulida in most phylogenetic analyses. The affinity of cricoscosmiids within Ecdysozoa is therefore of much interest, as is testing the homology of these seriated structures. We report four new specimens of the rare cricocosmiid Tabelliscolex hexagonus, yielding new details of the ventral trunk projections, sclerites and proboscis. New data confirm T. hexagonus possessed paired ventral trunk projections in a consistent seriated pattern, which is also reported from new material of Cricocosmia jinningensis (Cricocosmiidae) and Mafangscolex yunnanensis (Palaeoscolecida sensu stricto). Even when the seriated sclerites and ventral projections of cricocosmiids are coded as homologous with the seriated trunk sclerites and paired appendages, respectively, of lobopodian panarthropods, our tree searches indicate they are convergent. Cricocosmiidae is nested within a monophyletic “Palaeoscolecida sensu lato” clade (Palaeoscolecidomorpha nov.) in stem-group Priapulida. Our study indicates that morphological seriation has independent origins in Scalidophora and Panarthropoda.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosionSupplementary material:https://doi.org/10.6084/m9.figshare.c.5551565

2021 ◽  
pp. jgs2021-111
Author(s):  
Martin R. Smith ◽  
Alavya Dhungana

Exceptionally preserved fossils are key to reconstructing the origin of the modern animal body plans in the Cambrian radiation. The Panarthropod phyla Euarthropoda, Onychophora and Tardigrada have roots in a ‘lobopodian’ grade typified by broadly cylindrical organisms with sclerotized dorsal plates and paired ventral projections. A similar anatomical configuration has been taken to link certain palaeoscolecid worms with the earliest ecdysozoans. Shi et al. (2021) contend that these similarities evolved convergently, and that palaeoscolecids are priapulan relatives with little bearing on the panarthropod evolution.Here we show that this conclusion holds only under a particular treatment of inapplicable character states with known shortcomings. When inapplicable tokens are handled more rigorously, palaeoscolecids are most parsimoniously reconstructed as stem-group panarthropods with homologous dorsal plates and ventral projections – highlighting the degree to which the treatment of inapplicable data can influence fundamental evolutionary conclusions. As the position of palaeoscolecids depends so strongly on the underlying methodology, and is highly uncertain under a Bayesian approach, we consider it premature to exclude the possibility that panarthropods evolved from a grade of palaeoscolecids with dorsal plates and ventral projections.Supplementary material:https://doi.org/10.6084/m9.figshare.16419522


2021 ◽  
pp. jgs2020-246 ◽  
Author(s):  
Cédric Aria ◽  
Fangchen Zhao ◽  
Maoyan Zhu

In spite of their unrivalled ecological success, the origins of terrestrial mandibulates have long remained virtually unknown. In recent years, claims have been made based on phylogenetic results that fuxianhuiids, iconic fossils of the Chengjiang biota and purported basal euarthropods, were in fact mandibulates, allied with the problematic euthycarcinoids as the closest sister-group to Mandibulata or even stem myriapods. A re-examination of euthycarcinoid mouthparts has since brought additional support to this view. Here, we reinvestigated the anterior anatomy of the Cambrian euarthropod Fuxianhuia and its relatives. We demonstrate that the fuxianhuiid head is that of a mandibulate, sharing similarities with hymenocarines, including a limbless intercalary segment. The hypostome is a sub-triangular sclerite partially fused but anatomically independent from a large, bilobed labral plate, as observed in many extant mandibulate taxa as well as euthycarcinoids. The so-called ‘specialized post-antenn(ular) appendages' are therefore the mandibles, with a tripartite palp and large dented gnathal lobe partially covered by the hypostome-labrum complex. Under a ‘deep split' phylogenetic scenario, Fuxianhuia and its relatives are here resolved as sister-group to crown Mandibulata.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosionSupplementary material: Additional remarks on terminology, morphological interpretations and a list of modified/new characters used for the phylogenetic analysis are available at https://doi.org/10.6084/m9.figshare.c.5305042


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-043 ◽  
Author(s):  
Feiyang Chen ◽  
Glenn A. Brock ◽  
Zhiliang Zhang ◽  
Brittany Laing ◽  
Xinyi Ren ◽  
...  

The Guanshan Biota is an unusual early Cambrian Konservat-Lagerstätte from China and is distinguished from all other exceptionally preserved Cambrian biotas by the dominance of brachiopods and a relatively shallow depositional environment. However, the faunal composition, overturn and sedimentology associated with the Guanshan Biota are poorly understood. This study, based on collections through the best-exposed succession of the basal Wulongqing Formation at the Shijiangjun section, Wuding County, eastern Yunnan, China recovered six major animal groups with soft tissue preservation; brachiopods vastly outnumbered all other groups. Brachiopods quickly replace arthropods as the dominant fauna following a transgression at the base of the Wulongqing Formation. A transition from a botsfordiid-, eoobolid- and acrotretid- to an acrotheloid-dominated brachiopod assemblage occurs up-section. Four episodically repeated lithofacies reveal a relatively low-energy, offshore to lower shoreface sedimentary environment at the Shijiangjun section, which is very different from the Wulongqing Formation in the Malong and Kunming areas. Multiple event flows and rapid obrution are responsible for faunal overturn and fluctuation through the section. A detailed lithofacies and palaeontological investigation of this section provides a better understanding of the processes and drivers of faunal overturn during the later phase of the Cambrian Explosion.Supplementary material: Composition and comparison of the Malong Fauna and the Guanshan Biota is are available at: https://doi.org/10.6084/m9.figshare.c.5080799


2021 ◽  
pp. jgs2021-030
Author(s):  
Catherine E. Boddy ◽  
Emily G. Mitchell ◽  
Andrew Merdith ◽  
Alexander G. Liu

Macrofossils of the late Ediacaran Period (c. 579–539 Ma) document diverse, complex multicellular eukaryotes, including early animals, prior to the Cambrian radiation of metazoan phyla. To investigate the relationships between environmental perturbations, biotic responses and early metazoan evolutionary trajectories, it is vital to distinguish between evolutionary and ecological controls on the global distribution of Ediacaran macrofossils. The contributions of temporal, palaeoenvironmental and lithological factors in shaping the observed variations in assemblage taxonomic composition between Ediacaran macrofossil sites are widely discussed, but the role of palaeogeography remains ambiguous. Here we investigate the influence of palaeolatitude on the spatial distribution of Ediacaran macrobiota through the late Ediacaran Period using two leading palaeogeographical reconstructions. We find that overall generic diversity was distributed across all palaeolatitudes. Among specific groups, the distributions of candidate ‘Bilateral’ and Frondomorph taxa exhibit weakly statistically significant and statistically significant differences between low and high palaeolatitudes within our favoured palaeogeographical reconstruction, respectively, whereas Algal, Tubular, Soft-bodied and Biomineralizing taxa show no significant difference. The recognition of statistically significant palaeolatitudinal differences in the distribution of certain morphogroups highlights the importance of considering palaeolatitudinal influences when interrogating trends in Ediacaran taxon distributions.Supplementary material: Supplementary information, data and code are available at https://doi.org/10.6084/m9.figshare.c.5488945Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Richard J. Howard ◽  
Gregory D. Edgecombe ◽  
Xiaomei Shi ◽  
Xianguang Hou ◽  
Xiaoya Ma

Abstract Background Ecdysozoa are the moulting protostomes, including arthropods, tardigrades, and nematodes. Both the molecular and fossil records indicate that Ecdysozoa is an ancient group originating in the terminal Proterozoic, and exceptional fossil biotas show their dominance and diversity at the beginning of the Phanerozoic. However, the nature of the ecdysozoan common ancestor has been difficult to ascertain due to the extreme morphological diversity of extant Ecdysozoa, and the lack of early diverging taxa in ancient fossil biotas. Results Here we re-describe Acosmia maotiania from the early Cambrian Chengjiang Biota of Yunnan Province, China and assign it to stem group Ecdysozoa. Acosmia features a two-part body, with an anterior proboscis bearing a terminal mouth and muscular pharynx, and a posterior annulated trunk with a through gut. Morphological phylogenetic analyses of the protostomes using parsimony, maximum likelihood and Bayesian inference, with coding informed by published experimental decay studies, each placed Acosmia as sister taxon to Cycloneuralia + Panarthropoda—i.e. stem group Ecdysozoa. Ancestral state probabilities were calculated for key ecdysozoan nodes, in order to test characters inferred from fossils to be ancestral for Ecdysozoa. Results support an ancestor of crown group ecdysozoans sharing an annulated vermiform body with a terminal mouth like Acosmia, but also possessing the pharyngeal armature and circumoral structures characteristic of Cambrian cycloneuralians and lobopodians. Conclusions Acosmia is the first taxon placed in the ecdysozoan stem group and provides a constraint to test hypotheses on the early evolution of Ecdysozoa. Our study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy (e.g. predation), may have characterised the origin and radiation of crown group ecdysozoans from Acosmia-like ancestors.


2021 ◽  
pp. jgs2020-167
Author(s):  
Ben Yang ◽  
Michael Steiner

Classical sections, such as the Maidiping and Daqiao Mine sections of South Sichuan (China), expose early Cambrian deposits that are crucial for understanding the biological and environmental evolution of Yangtze Craton. These sequences are rich in Terreneuvian small shelly fossils, which can be assigned to assemblages I and III from South China. The Anabarites trisulcatus– Protohertzina anabarica Assemblage Zone (Assemblage I) is recognized at the lower Maidiping Formation. The second assemblage (Paragloborilus subglobosus – Purella squamulosa Assemblage Zone) cannot be verified in South Sichuan, although previous reports claimed its existence based on the occurrence of Paragloborilus subglobosus. The third assemblage (Watsonella crosbyi Assemblage Zone) is confirmed in the upper Maidiping Formation. The abundant bioclasts in this interval indicate abrasions and bioerosions by winnowing or starved sedimentation. Carbon isotope values from the Maidiping section present no negative excursion at the presumed Ediacaran–Cambrian transition. A positive carbon isotope excursion is observed in the upper Maidiping Formation (Assemblage III) which is correlated to the ZHUCE excursion in the Dahai Member of eastern Yunnan. The shallow water deposits of South Sichuan can be correlated with the South China, western Mongolia and Siberia successions based on biozonations and carbon isotope trends.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosionSupplementary material:https://doi.org/10.6084/m9.figshare.c.5326834


2021 ◽  
pp. jgs2020-162
Author(s):  
Fan Wei ◽  
Yang Zhao ◽  
Ailin Chen ◽  
Xianguang Hou ◽  
Peiyun Cong

Aspiculate demosponges are rarely described in geological history on account of the absence of spicules that are stable and resistant to degradation. One exception is the exquisite preservation of sponges without any mineralised skeletons discovered in Lagerstätten (e.g. the Burgess Shale). The Chengjiang Biota, an early example of a Burgess Shale-type Biota in South China (Cambrian Series 2, Stage 3), is one of the only examples of convincing aspiculate sponges until now. Here, we describe Vauxia pregracilenta sp. nov. and V. paraleioia sp. nov., as well as two poorly preserved vauxiid specimens (Vauxia sp.) in open nomenclature, from the Chengjiang Biota. V. pregracilenta has a fan-like holdfast and branches in various sizes, as well as a typical two-layered net-like skeleton, without spicules. The endosomal layer is hexagonal, while the dermal layer is sub-rectangular. V. paraleioia is characterised by a two-layered subconical skeleton, with the dermal layer ornamented with vertical surface grooves. The openings of the dermal and endosomal layers of V. paraleioia are both hexagonal but of different sizes. These newly discovered Vauxia species indicate that the aspiculate sponges were diversified in the early Cambrian period. Partial silicification of the fibres of aspiculate Vauxia are confirmed from the Chengjiang Biota.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosion


Author(s):  
Bahareh Nowruzi ◽  
Fabiana Soares

In Iran, polyphasic studies of unicellular cyanobacteria are still scarce, with more emphasis being placed on filamentous cyanobacteria in paddy fields and fresh water regions. In an effort to increase the knowledge of the diversity of unicellular cyanobacteria from paddy fields in Iran, we have isolated and characterized a new unicellular cyanobacterium strain. The strain was studied using a polyphasic approach based on morphological, ecological and phylogenetic analyses of the 16S–23S ITS rRNA gene region. Complementarily, we have searched for the presence of cyanotoxin genes and analysed the pigment content of the strain. Results showed that the strain was morphologically indistinguishable from the genus Chroococcus , but phylogenetic analyses based on the Bayesian inference and maximum-likelihood methods placed the strain in a separated monophyletic and highly supported (0.99/98, posterior probability/maximum-likelihood) genus-level cluster, distant from Chroococcus sensu stricto and with Chalicogloea cavernicola as sister taxa. The calculated p-distance for the 16S rRNA gene also reinforced the presence of a new genus, by showing 92 % similarity to C. cavernicola . The D1–D1′, Box-B and V3 ITS secondary structures showed the uniqueness of this strain, as it shared no similar pattern with closest genera within the Chroococcales. For all these reasons, and in accordance with the International Code of Nomenclature for Algae, Fungi and Plants, we here proposed the description of a new genus with the name Alborzia gen. nov. along with the description of a new species, Alborzia kermanshahica sp. nov. (holotype: CCC1399-a; reference strains CCC1399-b; MCC 4116).


2021 ◽  
pp. jgs2020-234
Author(s):  
Chengsheng Jin ◽  
Chao Li ◽  
Thomas J. Algeo ◽  
Guochang Wang ◽  
Wei Shi ◽  
...  

The Ediacaran radiation of metazoans is widely thought to have been triggered by an increase in atmospheric and oceanic oxygen levels. Although supported by other proxies, rising oxygen levels were deduced to a significant degree from sedimentary enrichments of redox-sensitive trace elements (RSTEs). However, some organic-rich shales of this period show only minor enrichments in RSTEs, leaving the significance of RSTE data for palaeo-oxygenation interpretations in doubt. We measured and compiled proxies for marine redox conditions (Fe species, RSTEs), total organic carbon (TOC) and water mass restriction (Mo/TOC and Co × Mn v. Cd/Mo) in the intra-shelf Jiulongwan and basinal Sandu sections of the Nanhua Basin in South China. Compared with the same proxies from coeval sections in the Nanhua Basin and globally, our results document a strong spatial heterogeneity of RSTE enrichments in anoxic black shales during the late Ediacaran. We infer that RSTE enrichments were strongly influenced by local factors, such as basinal restriction, seawater RSTE concentrations, and differential elemental responses to redox conditions and other influences. The broader significance of our findings is that they highlight the difficulty of investigating global redox conditions based on an analysis of local RSTE proxies within a single depositional basin or a limited number of study sections.Thematic collection: This article is part of the Advances in the Cambrian Explosion collection available at: https://www.lyellcollection.org/cc/advances-cambrian-explosionSupplementary material: Tables S1–S3 are available at https://doi.org/10.6084/m9.figshare.c.5325047


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 516-521 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yubian Zhang ◽  
Xijie Yin ◽  
Shuang Wang

A Gram-staining-positive, aerobic, motile and non-spore-forming actinobacteria, designated strain F10T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Nesterenkonia . Strain F10T shared highest 16S rRNA gene sequence similarity of 96.8 % with Nesterenkonia aethiopica DSM 17733T, followed by Nesterenkonia xinjiangensis YIM 70097T (96.7 %) and Nesterenkonia alba CAAS 252T (96.6 %). The organism grew at 4–50 °C, at pH 7.0–12.0 and in the presence of 0–12 % (w/v) NaCl, with optimal growth occurring at 40 °C, at pH 9.0 and in the presence of 1 % (w/v) NaCl. The peptidoglycan type was A4(alpha), l-Lys–Gly–l-Glu. The polar lipid profile of strain F10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and two unknown lipids. The isolate contained MK-9 (92 %) and MK-8 (5.8 %) as the major components of the menaquinone system, and anteiso-C17 : 0 (50.9 %) and anteiso-C15 : 0 (29.8 %) as the predominant fatty acids. The G+C content of the genomic DNA of strain F10T was 66.2 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain F10T represents a novel species of the genus Nesterenkonia for which the name Nesterenkonia alkaliphila sp. nov. is proposed. The type strain is F10T ( = LMG 28112T = CGMCC 1.12781T = JCM 19766T = MCCC 1A09946T).


Sign in / Sign up

Export Citation Format

Share Document