‘Block and basin’ style rift basins: sedimentological insights from the Mississippian Fell Sandstone Formation

2021 ◽  
pp. jgs2021-083
Author(s):  
Louis P. Howell ◽  
Charlotte Priddy ◽  
Andrew J. Mitten ◽  
Adam J. Jeffery ◽  
Stuart S. Egan ◽  
...  

The block and basin tectono-stratigraphic framework for the northern Pennine (rift) Basin, within which buoyant granite intrusions core intra-basin fault-bound blocks, has long held traction. However, many of the elements of this framework are rooted in primitive tectonic models and, perhaps unsurprisingly, corresponding depositional models often reflect this. Using sedimentological and sedimentary provenance approaches, the syn-rift (Mississippian) fluvio-deltaic Fell Sandstone Formation and age-equivalent strata within the northern Pennine Basin are examined. Highlighted divergences from classically depicted models relate to occurrences of pre-Carboniferous basement domes or monoclines, which are unbound by major vertically displacing (>100 m) fault systems. Such structures in the northern Pennine Basin are all granite-cored and their origins are associated with their buoyancy and flexural isostatic processes. One such basement dome, the Cheviot Block, confined and deflected the Fell Sandstone fluvio-deltaic system from the west, causing locally elevated net sand content and variations in dominant palaeodrainage direction. Central parts of the Alston Block, which forms a regional monocline along an E-W axis, were comparatively uplifted because of flexural isostatic responses to granite intrusions. The findings presented are not just at variance with classically depicted depositional models for the region, but also with more general depictions of dominantly normal fault-driven rift basin systems.Supplementary material: [table of data locations with derivation, trace element data, and major element (oxide) data] is available at https://doi.org/10.6084/m9.figshare.c.5733257

2021 ◽  
pp. jgs2021-045
Author(s):  
B. Anders ◽  
S. Tyrrell ◽  
D. Chew ◽  
C. Mark ◽  
G. O'Sullivan ◽  
...  

Multiple factors (e.g. source rock composition, climate, nature/scale of sedimentary system) influence the volume and composition of sediment delivered to basins. Fluctuations in these parameters produce cryptic source signals which can vary within the same sedimentary system. Bespoke multi-proxy provenance approaches, targeted at minerals of variable stability, allow for an assessment of natural biasing (recycling) and intra-basinal spatial variations.Provenance of fluvial/deltaic sandstones (Mullaghmore Sandstone Formation) in the NW Carboniferous Basin, Ireland, has been constrained using zircon and apatite U-Pb geochronology, trace elements in apatite and Pb-in-K-feldspar analysis. Zircon U-Pb grain populations are consistent with feldspar data, suggesting Proterozoic basement highs offshore Ireland and Scotland were the main contributor with minor supply from Archean-Palaeoproterozoic rocks of Greenland/NW Scotland and Caledonian-aged rocks. However, apatite data shows a much larger proportion of Caledonian-aged grains of metamorphic origin, suggesting significant sediment was recycled from Neopropterozoic metasedimentary rocks. The spatial variation in provenance indicates that, at onset of clastic input, sediment was being routed to the basin through a complex drainage system, comprising of several discrete hinterland catchments, rather than supply from a single, large interconnected sedimentary system. Such complexities can only be identified with the careful application of a bespoke multi-proxy provenance approach.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5536691


2021 ◽  
pp. jgs2021-040
Author(s):  
David R.M. Pattison ◽  
Shantal A. Goldsmith

The metamorphism of the Buchan block in northeast Scotland, and its relation to the Barrovian domain to its west, have been reassessed from consideration of mineral assemblages, microstructures, phase equilibrium modelling and monazite U-Pb geochronology. Zones of increasing metamorphic grade surround a central low grade domain (biotite zone) and define a northward-opening, U-shaped metamorphic map pattern ascribed to post-metamorphic folding. The eastern and southern Buchan domain show the classic Buchan-type prograde sequence cordierite – andalusite – sillimanite – migmatite/gneiss, representing a metamorphic field gradient of gently increasing pressure between 2.5-3.0 kbar, ∼550 °C and 3.5-4.0 kbar, ∼750 °C. A lower pressure metamorphic field gradient (by less than ∼0.5 kbar) is interpreted for the northeastern Buchan domain. The west Buchan domain shows a prograde sequence of staurolite+andalusite – sillimanite – gneiss/migmatite, representing a metamorphic field gradient higher by ∼1 kbar or less than the classic sequence. Uniquely in the northwestern Buchan domain is a staurolite-cordierite-andalusite domain in which staurolite-bearing schists are interpreted to have been overprinted by cordierite+andalusite assemblages. Monazite U-Pb geochronology of schists and gneisses from the Buchan block, including the Cowhythe and Ellon gneisses, yields ages in the range 470 ±5 Ma, supporting geological evidence that the gneisses are metamorphosed Dalradian strata rather than older basement gneisses. The metamorphic ages are similar to the ages of mafic igneous intrusions in the Buchan block, even though many of the exposed intrusions post-date the regional metamorphic zones. The Buchan metamorphic zones are truncated to the west by the Portsoy-Duchray Hill lineament (PDHL), a ductile shear zone that juxtaposes the Buchan rocks against higher-pressure, lower-temperature (kyanite-bearing) Barrovian schists to the west. A 2-15 km wide corridor of andalusite pseudomorphed by kyanite occurs between the PDHL and the Keith shear zone to its west. Monazite geochronology of the Barrovian rocks west of Portsoy shows little evidence of the c. 470 Ma signature of the Buchan block, instead yielding a dominant cluster of ages at c. 450 Ma and a more poorly defined grouping at c. 490 Ma.Supplementary materials: Analytical methods, thermodynamic modelling; tables S1-S13; figures S1-S5 are available at https://doi.org/10.6084/m9.figshare.c.5536745


2021 ◽  
pp. jgs2021-079
Author(s):  
Xin Qian ◽  
Shen Ma ◽  
Xianghong Lu ◽  
Sainan Wu ◽  
Mongkol Udchachon ◽  
...  

Volcanic rocks in the Chanthaburi zone are rarely reported and important for investigating the tectonic evolution of Paleotethyan Ocean in SE Thailand. Four rhyolitic samples from the Ko Chang Island yield zircon ages of 254–258 Ma, confirming the presence of Late Permian volcanic rocks in SE Thailand. These rocks consist of Group 1 rhyolites and Group 2 rhyolitic ignimbrites and have high K2O contents of 4.92–7.10 wt.% and A/CNK values of 1.10–1.69. They are enriched in LREEs, Rb, Th, U, Zr and Y, and show negative anomalies of Ba, Sr, Nb, Ta and Ti with obvious Eu anomalies. Their whole-rock εNd (t) values range from −1.7 to −3.1. Zircon in-situ εHf (t) and δ18O values range from 0.0 to +5.6 and 8.2‰ to 9.6‰, respectively. They belong to peraluminous, ultrapotassic A-type rhyolites, and were derived from partial melting of a mixed source of Mesoproterozoic metasedimentary rocks with a component of juvenile mafic crust. These ultrapotassic rhyolites formed in a continental rift setting in response to the rollback of subducted Paleotethyan oceanic slab beneath the Indochina Block. Combining previous geological observations, we propose that there are some sporadically distributed continental rift basins along the Eastern Paleotethyan domain during the Permian.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5635390


2020 ◽  
Vol 177 (6) ◽  
pp. 1129-1148
Author(s):  
Leonardo Muniz Pichel ◽  
Christopher A.-L. Jackson

The Albian Gap is a uniquely large (up to 65 km wide and >450 km long), enigmatic salt-related structure in the Santos Basin, offshore Brazil. It is located near the basin margin and trends NE (i.e. subparallel to the Brazilian coastline). The gap is characterized by a near-complete absence of Albian strata above depleted Aptian salt. Its most remarkable feature is an equivalently large, equally enigmatic, basinward-dipping, supra-salt rollover that contains a post-Albian sedimentary succession that is up to 9 km thick. Owing to its unique geometry, size and counter-regional aspect, the origin and evolution of the Albian Gap has been the centre of debate for >25 years. This debate revolves around two competing models; that is, did it form as a result of thin-skinned (i.e. supra-salt) extension, or progradational loading and salt expulsion? The extension-driven model states that the Albian Gap (and overlying rollover) formed as a result of post-Albian gravity-driven extension accommodated by slip on a large, counter-regional, listric normal fault (the Cabo Frio Fault). Conversely, the expulsion-driven hypothesis states that the Albian Gap was established earlier, during the Albian, and that post-Albian deformation was controlled by differential loading, vertical subsidence and basinward salt expulsion in the absence of significant lateral extension. This study utilizes a large (c. 76 000 km2), dense (4–8 km line spacing), depth-migrated, 2D seismic dataset that fully covers and thus permits, for the first time, a detailed, quasi-3D structural analysis of the entire Albian Gap. In this study we focus on (1) the evolution of base-salt relief and the original salt thickness variations and (2) the geometry of the post-Albian rollover, and its related faults and salt structures. To constrain the kinematics of the Albian Gap, and how this relates to the evolution of the base-salt relief, we also apply novel structural restoration workflows that incorporate flexural isostasy, in addition to a detailed, sequential reconstruction of the intra-gap rollover sequences. Our results show that the geometry and kinematics of the Albian Gap vary along-strike, and that both post-Albian extension and expulsion play a significant role in its evolution. Basinward-dipping growth wedges, salt rollers and listric normal faults record extension, whereas sigmoidal wedges, halokinetic sequences and upturned near-diapir flaps, the latter two associated with large diapirs bounding the downdip edge of the gap, record basinward salt expulsion and inflation. Where the Albian Gap is relatively wide (>50 km), these processes alternate and operate at approximately equal proportions. Our results are consistent with the amount of basinward translation inferred from the analysis of ramp–syncline basins located downdip on the São Paulo Plateau. Our results seemingly reconcile one of the longest-running debates in salt tectonics, as well as having more general implications for understanding the regional kinematics and dynamics of salt-related structures in other salt basins, in particular the controls on the development of large, counter-regional faults.Supplementary material: Uninterpreted versions of the seismic sections are available at https://doi.org/10.6084/m9.figshare.c.5023088


2020 ◽  
pp. pygs2020-010
Author(s):  
A.C. Morton ◽  
J.I. Chisholm ◽  
D. Frei

New U-Pb isotopic analyses of detrital zircon grains from Namurian and Westphalian sandstones in the central and south parts of the Pennine Basin are combined with published analyses from the same region, to assess existing views on the nature and location of the source areas that supplied the clastic sediment. The study confirms that most sandstones were derived from distant areas to the north, west and south, and that a local source, in the Wales-Brabant High, also supplied sediment at times. The northern sources are thought to lie mainly in Laurentia (East Greenland), with some input from Baltica (Norway). Most sandstones entering from the west are thought to have been supplied from areas of Avalonian basement, with some components recycled from sediments that were themselves derived from the Caledonian belt that lay to the north. An exception is the Clifton Rock: its source is thought to lie entirely in the Irish Caledonides or in southern Scotland. Sandstones supplied from the south contain significant numbers of late Devonian and Carboniferous grains, indicating the inclusion of material eroded from the active Variscan orogenic belt in Europe. Northern provenance prevailed during Namurian and early Langsettian times, then alternated with western supply until the late Langsettian. Western input then dominated through most of Duckmantian times, until superseded in the late Duckmantian by supply from the Variscan orogen. The Woolley Edge Rock, now shown to be an isolated member of the northern group, entered the area just before the earliest sandstone of Variscan origin.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5174702


2021 ◽  
pp. SP510-2020-132
Author(s):  
Bo Zhao ◽  
Feixiang Wei ◽  
Wenjian Yang ◽  
Jiandong Xu ◽  
Xiaoge Cui

AbstractIn the West Kunlun Mountains, four volcanic fields (i.e., Kangxiwa, Dahongliutan, Qitaidaban, and Quanshuigou) are distributed along the Dahongliutan fault, which is approximately 180 km long. Based on field investigations, chronological measurements, and geochemical analysis of some volcanic fields, the results of geological, geochemical, and geophysical research by the predecessors in the corresponding study areas are summarised. The volcanic activities in these areas were mainly effusive eruptions, explosive eruptions, and phreatomagmatic eruptions. In this study, we discovered the Qitaiyanhu volcanic field for the first time and determined that the 14C age of the lacustrine strata underlying the Qitaiyanhu lava flows are 13110 ± 40 a B.P., indicating that there may still have been volcanic activities in the late Pleistocene and even the Holocene in the Dahongliutan fault area. The base surge deposits, which are the products of the interaction between magma and water, were found in the Kangxiwa volcanic field. The four shoshonitic rock fields of Kangxiwa, Dahongliutan, Qitaidaban, and Quanshuigou are likely to be products of different evolution stages from the same magma source area. The magmatic origin of these volcanic fields may be related to the upwelling of the asthenosphere, triggered by the collision between the Indian and Tarim plates.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5353446


2021 ◽  
pp. SP514-2020-271
Author(s):  
Bruno Rodrigues ◽  
Ricardo L. Silva ◽  
João Graciano Mendonça Filho ◽  
Matías Reolid ◽  
Driss Sadki ◽  
...  

AbstractIn this paper, we present a detailed review of upper Pliensbachian-lower Toarcian kerogen assemblages from the southern areas of the West Tethys shelf (between Morocco and northern Spain) and demonstrate the use of the Phytoclast Group as a tracer of palaeoenvironmental changes in the early Toarcian.The kerogen assemblages in the studied sections from the southern areas of the West Tethys shelf are dominated by the Phytoclast Group and terrestrial palynomorphs, although punctual increases in amorphous organic matter (AOM), freshwater (Botryococcus) and marine microplankton (dinoflagellate cysts, acritarchs, and prasinophyte algae) were observed at specific stratigraphic intervals. The opaque/non-opaque phytoclasts (OP/NOP) ratio was used to trace changes in palaeoclimate and other palaeoenvironmental parameters and reflect climate gradients associated with water availability during early Toarcian. During the Pliensbachian-Toarcian and Jenkyns events, changes in kerogen assemblages in the southern areas of the West Tethys shelf correlated with changes in the northern Tethys and Panthalassa shelf.The acceleration of the hydrological cycle associated with the aforementioned events was less intense in the northern Gondwana, southern and western Iberian basins, a reflection of the palaeogeographic position of these basins within the semi-arid climate belt when compared with the northern Iberian region and other northern areas of the West Tethys and Panthalassa shelf, inserted in winter-wet and warm temperate climate belts. AOM enrichment associated with the Pliensbachian-Toarcian and Jenkyns events reflects an increase in primary productivity linked with increased continental weathering, fluvial runoff and riverine OM, and nutrient input into marine areas, inducing water column stratification and promoting the preservation of OM.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5421485


2020 ◽  
Vol 56 (1) ◽  
pp. 55-62
Author(s):  
Emily Keeble ◽  
Michael J. Benton

The aetosaur Stagonolepis robertsoni was the first reptile to be named from the Late Triassic Lossiemouth Sandstone Formation of Morayshire. Its characteristic rectangular armour plates have been reported in isolation and in association with skeletal remains. Here we present for the first time a three-dimensional reconstruction of the armour plates around the tail in association with caudal vertebrae and a chevron, to give direct evidence of the body outline. The caudal vertebral column was surrounded by eight bony osteoderms, paired paramedian dorsal and ventral plates, and a pair of lateral osteoderms on right and left. The tail shape was subcircular, broader than high. The osteoderms overlap like roofing tiles, the posterior margin of each overlapping the osteoderm following behind. The success of these scans suggests that computed tomography scanning could reveal excellent detail of all the Elgin reptiles in the future.Supplementary material: Three-dimensional models of the two fossil specimens are available at: https://doi.org/10.6084/m9.figshare.c.4824183


2021 ◽  
pp. petgeo2020-099
Author(s):  
Max Casson ◽  
Jason Jeremiah ◽  
Gérôme Calvès ◽  
Frédéric de Ville de Goyet ◽  
Kyle Reuber ◽  
...  

Segmentation of the Guyanas continental margin of South America is inherited from the dual-phase Mesozoic rifting history controlling the first-order post-rift sedimentary architecture. The margin is divided into two segments by a transform marginal plateau (TMP), the Demerara Rise, into the Central and Equatorial Atlantic domains. This paper investigates the heterogeneities in the post-rift sedimentary systems at a mega-regional scale (>1000 km). Re-sampling seven key exploration wells and scientific boreholes provides new data (189 analysed samples) that have been used to build a high-resolution stratigraphic framework using multiple biostratigraphic techniques integrated with organic geochemistry to refine the timing of 10 key stratigraphic surfaces and three megasequences. The results have been used to calibrate the interpretation of a margin-scale two-dimensional seismic reflection dataset and build megasequence isochore maps, structural restorations and gross depositional environment maps at key time intervals of the margin evolution.Our findings revise the dating of the basal succession drilled by the A2-1 well, indicating that the oldest post-rift sequence penetrated along the margin is late Tithonian age (previously Callovian). Early Central Atlantic carbonate platform sediments passively infilled subcircular-shaped basement topography controlled by underlying basement structure of thinned continental crust. Barremian-Aptian rifting in the Equatorial Atlantic folding and thrusting the Demerara Rise resulting in major uplift, gravitational margin collapse, transpressional structures, and peneplanation of up to 1 km of sediment capped by the regional angular base Albian unconformity. Equatorial Atlantic rifting led to margin segmentation and the formation of the TMP, where two major unconformities developed during the intra Late Albian and base Cenomanian. These two unconformities are time synchronous with oceanic crust accretion offshore French Guiana and in the Demerara-Guinea transform, respectively. A marine connection between the Central and Equatorial Atlantic is demonstrated by middle Late Albian times, coinciding with deposition of the organic-rich source rock of the Canje Formation) (average TOC 4.21 %). The succession is variably truncated by the middle Campanian unconformity. Refining the stratigraphic framework within the context of the structural evolution and segmentation of the Guyanas margin impacts the understanding of key petroleum system elements.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5280490


AAPG Bulletin ◽  
2017 ◽  
Vol 101 (02) ◽  
pp. 265-288 ◽  
Author(s):  
Yin Liu ◽  
Qinghua Chen ◽  
Xi Wang ◽  
Kai Hu ◽  
Shaolei Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document