The ‘Evaporiti di Monte Castello’ deposits of the Messinian Southern Apennines foreland basin (Irpinia–Daunia Mountains, Southern Italy): stratigraphic evolution and geological context

2007 ◽  
Vol 285 (1) ◽  
pp. 191-218 ◽  
Author(s):  
F. Matano
Geosciences ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 247 ◽  
Author(s):  
Fabio Matano ◽  
Silvio Di Nocera ◽  
Sara Criniti ◽  
Salvatore Critelli

The geology of the epicentral area of the 1980 earthquake (Irpinia-Lucania, Italy) is described with new stratigraphic, petrographic and structural data. Subsurface geological data have been collected during the studies for the excavation works of the Pavoncelli bis hydraulic tunnel, developing between Caposele and Conza della Campania in an area that was highly damaged during 1980 earthquake. Our approach includes geological, stratigraphic, structural studies, and petrological analyses of rock samples collected along the tunnel profile and in outcropping sections. Stratigraphic studies and detailed geological and structural mapping were carried out in about 200 km2 wide area. The main units cropping out have been studied and correlated in order to document the effects of tectonic changes during the orogenic evolution on the foreland basin systems and the sandstone detrital modes in this sector of the southern Apennines. The multi-disciplinary and updated datasets have allowed getting new insights on the tectono-stratigraphic evolution and stratigraphic architecture of the southern Apennines foreland basin system and on the structural and stratigraphic relations of Apennines tectonic units and timing of their kinematic evolution. They also allowed to better understand the relationships between internal and external basin units within the Apennine thrust belt and its tectonic evolution.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 125
Author(s):  
Giacomo Prosser ◽  
Giuseppe Palladino ◽  
Dario Avagliano ◽  
Francesco Coraggio ◽  
Eleonora Maria Bolla ◽  
...  

This paper shows the main results of a multidisciplinary study performed along the southeastern sector of the Agri Valley in Basilicata (Southern Italy), where Cenozoic units, crucial for constraining the progressive evolution of the Southern Apennine thrust and fold belt and, more in general, the geodynamic evolution of the Mediterranean area are widely exposed. In particular, we aimed at understanding the stratigraphic and tectonic setting of deep-sea, thrust-top Cenozoic units exposed immediately to north of Montemurro, between Costa Molina and Monte dell’Agresto. In the previous works different units, showing similar sedimentological characteristics but uncertain age attribution, have been reported in the study area. In our study, we focussed on the Albidona Formation, pertaining to the Liguride realm, which shows most significant uncertainties regarding the age and the stratigraphic setting. The study was based on a detailed field survey which led to a new geological map of the area. This was supported by new stratigraphic, biostratigraphic and structural analyses. Biostratigraphic analysis provided an age not older than the upper Ypresian and not younger than the early Priabonian. Recognition of marker stratigraphic horizons strongly helped in the understanding of the stratigraphy of the area. The study allowed a complete revision of the stratigraphy of the outcropping Cenozoic units, the recognition of until now unknown tectonic structures and the correlation between surface and subsurface geology.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 118
Author(s):  
Giovanni Ruggieri ◽  
Vincenzo Allocca ◽  
Flavio Borfecchia ◽  
Delia Cusano ◽  
Palmira Marsiglia ◽  
...  

In many Italian regions, and particularly in southern Italy, karst aquifers are the main sources of drinking water and play a crucial role in the socio-economic development of the territory. Hence, estimating the groundwater recharge of these aquifers is a fundamental task for the proper management of water resources, while also considering the impacts of climate changes. In the southern Apennines, the assessment of hydrological parameters that is needed for the estimation of groundwater recharge is a challenging issue, especially for the spatial and temporal inhomogeneity of networks of rain and air temperature stations, as well as the variable geomorphological features and land use across mountainous karst areas. In such a framework, the integration of terrestrial and remotely sensed data is a promising approach to limit these uncertainties. In this research, estimations of actual evapotranspiration and groundwater recharge using remotely sensed data gathered by the Moderate Resolution Imaging Spectrometer (MODIS) satellite in the period 2000–2014 are shown for karst aquifers of the southern Apennines. To assess the uncertainties affecting conventional methods based on empirical formulas, the values estimated by the MODIS dataset were compared with those calculated by Coutagne, Turc, and Thornthwaite classical empirical formulas, which were based on the recordings of meteorological stations. The annual rainfall time series of 266 rain gauges and 150 air temperature stations, recorded using meteorological networks managed by public agencies in the period 2000–2014, were considered for reconstructing the regional distributed models of actual evapotranspiration (AET) and groundwater recharge. Considering the MODIS AET, the mean annual groundwater recharge for karst aquifers was estimated to be about 448 mm·year−1. In contrast, using the Turc, Coutagne, and Thornthwaite methods, it was estimated as being 494, 533, and 437 mm·year−1, respectively. The obtained results open a new methodological perspective for the assessment of the groundwater recharge of karst aquifers at the regional and mean annual scales, allowing for limiting uncertainties and taking into account a spatial resolution greater than that of the existing meteorological networks. Among the most relevant results obtained via the comparison of classical approaches used for estimating evapotranspiration is the good matching of the actual evapotranspiration estimated using MODIS data with the potential evapotranspiration estimated using the Thornthwaite formula. This result was considered linked to the availability of soil moisture for the evapotranspiration demand due to the relevant precipitation in the area, the general occurrence of soils covering karst aquifers, and the dense vegetation.


2017 ◽  
Vol 68 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Marcello Schiattarella ◽  
Salvatore Ivo Giano ◽  
Dario Gioia

Abstract Uplift and erosion rates have been calculated for a large sector of the Campania-Lucania Apennine and Calabrian arc, Italy, using both geomorphological observations (elevations, ages and arrangement of depositional and erosional land surfaces and other morphotectonic markers) and stratigraphical and structural data (sea-level related facies, base levels, fault kinematics, and fault offset estimations). The values of the Quaternary uplift rates of the southern Apennines vary from 0.2 mm/yr to about 1.2–1.3 mm/yr. The erosion rates from key-areas of the southern Apennines, obtained from both quantitative geomorphic analysis and missing volumes calculations, has been estimated at 0.2 mm/yr since the Middle Pleistocene. Since the Late Pleistocene erosion and uplift rates match well, the axial-zone landscape could have reached a flux steady state during that time, although it is more probable that the entire study area may be a transient landscape. Tectonic denudation phenomena — leading to the exhumation of the Mesozoic core of the chain — followed by an impressive regional planation started in the Late Pliocene have to be taken into account for a coherent explanation of the morphological evolution of southern Italy.


2018 ◽  
Vol 116 ◽  
pp. 94-113 ◽  
Author(s):  
Vincenzo La Bruna ◽  
Fabrizio Agosta ◽  
Juliette Lamarche ◽  
Sophie Viseur ◽  
Giacomo Prosser

2003 ◽  
Vol 101-102 ◽  
pp. 27-41 ◽  
Author(s):  
Alessandra Ascione ◽  
Aldo Cinque ◽  
Luigi Improta ◽  
Fabio Villani

Sign in / Sign up

Export Citation Format

Share Document