scholarly journals Fault seal behaviour in Permian Rotliegend reservoir sequences: case studies from the Dutch Southern North Sea

2019 ◽  
Vol 496 (1) ◽  
pp. 9-38 ◽  
Author(s):  
K. van Ojik ◽  
A. Silvius ◽  
Y. Kremer ◽  
Z. K. Shipton

AbstractPermian Rotliegend reservoir rocks are generally characterized by high net/gross (N/G) ratios, and faults in such sand-dominated lithologies are typically not considered likely to seal. Nevertheless, many examples of membrane sealing are present in Rotliegend gas fields in the Southern Permian Basin. This manuscript reviews examples of membrane sealing in the Dutch Rotliegend; it presents an extensive dataset of petrophysical properties of Rotliegend fault rocks and analyses two case studies using commonly used workflows.Fault (membrane) seal studies have been carried out on two Rotliegend fields to test the level of confidence and uncertainty of prediction of ‘across fault pressure differences’ (AFPD) based on existing SGR-based algorithms. From the field studies it is concluded that observable small AFPDs are present and that these are likely pre-production AFPDs due to exploration-time scale trapping and retention of hydrocarbons. Two shale gouge ratio (SGR)-based empirical algorithms have been used here to estimate AFPDs in lower N/G reservoir intervals with the aim of predicting membrane seal behaviour, and these results are compared to field data. It is concluded the selected SGR-based tools predict AFPD for Upper Rotliegend lower N/G reservoir rocks with reasonable results. Nonetheless, the core sample datasets show a much wider range of permeability and capillary entry pressure than predicted by the selected SGR transforms. This highlights the potential to modify existing workflows for application to faults in high N/G lithologies. Data sharing and collaboration between industry and academics is encouraged, so that in the long run workflows can be developed specifically for faults in high N/G lithologies.

2019 ◽  
Vol 496 (1) ◽  
pp. 145-161 ◽  
Author(s):  
Titus A. Murray ◽  
William L. Power ◽  
Anthony J. Johnson ◽  
Greg J. Christie ◽  
David R. Richards

AbstractWe propose and validate methods for risk analysis of fault-bounded hydrocarbon traps in exploration. We concentrate on cross-fault leakage and consider lateral seals due to (1) juxtaposition and (2) high capillary-entry-pressure fault rock (membrane seal). We conclude that stochastic methods for fault seal analysis are essential, due to the large number of structural and stratigraphic parameters and the uncertainties. Central to the methods proposed is a Monte Carlo simulation which models geometrical and stratigraphic uncertainty. Multiple Allan maps (fault-parallel cross-sections) are produced and analysed for juxtaposition and shale gouge ratio (SGR). For validation, known discoveries with independently observed hydrocarbon–water contacts (IHWC) have been back-analysed. We present two case studies in this paper, and an additional 40 case studies are summarized (four public domain and 36 confidential case studies). The model outputs were compared with the IHWC. Juxtaposition analysis with no SGR contribution gives the smallest error. The inclusion of any fault rock seal mechanisms (such as SGR) matches or increases predicted hydrocarbon column heights compared to juxtaposition and gives larger errors. We conclude there is no reason to include fault rock membrane seals in exploration prospect risking.


2021 ◽  
pp. 57-68
Author(s):  
N. Yu. Moskalenkо

The relevance of the article is associated with the importance of the object of the research. Dozens of unique and giant oil and gas fields, such as Urengoyskoye, Medvezhye, Yamburgskoye, Vyngapurovskoye, Messoyakhskoye, Nakhodkinskoye, Russkoye, have been identified within the Cenomanian complex. The main feature of Cenomanian rocks is their slow rock cementation. This leads to significant difficulties in core sampling and the following studies of it; that is the direct and most informative source of data on the composition and properties of rocks that create a geological section.The identification of the factors, which determine the slow rock cementation of reservoir rocks, allows establishing a certain order in sampling and laboratory core studies. Consequently, reliable data on the reservoir and estimation of hydrocarbon reserves both of discovered and exploited fields and newly discovered fields that are being developed on the territory of the Gydan peninsula and the Bolshekhetskaya depression will be obtained. This study is also important for the exploration and development of hydrocarbon resources of the continental shelf in the waters of the Arctic seas of Russia as one of the most promising areas.As a result of the analysis, it was found that the formation of rocks of the PK1-3 Cenomanian age of the Bolshekhetskaya depression happened under conditions of normal compaction of terrigenous sedimentary rocks that are located in the West Siberian basin. Slow rock cementation of reservoir rocks is associated with relatively low thermobaric conditions of their occurrence, as well as the low content of clay and absence of carbonate cements. Their lithological and petrophysical characteristics are close to the analogous Cenomanian deposits of the northern fields of Western Siberia and can be applied to other unconsolidated rocks studied areas.


2021 ◽  
Vol 73 (01) ◽  
pp. 28-31
Author(s):  
Trent Jacobs

Pumping proppant down a wellbore is the easy part. Ensuring that the precious material does its job is another matter. A trio of field studies recently presented at the 2020 SPE Annual Technical Conference and Exhibition (ATCE) highlight in different ways how emerging technology and old-fashioned problem solving are moving the industry needle on proppant and conductivity control. These examples include the adoption of unconventional completion techniques in a conventional oil field in Russia and work to validate the use of small amounts of ceramic proppant in North Dakota’s tight-oil formations. Both studies seek to counter widely held assumptions about proppant conductivity. A third study details a recently developed chemical coating that Permian Basin producers are applying “on the fly” to sand before it is pumped downhole. The new adhesive material has found a niche in helping operators mitigate the amount of sand that returns to surface during flowback, a sectorwide issue that drives up completion costs and later may spell trouble for artificial lift systems. Disproving “The Overflush Paradigm” After conventional reservoirs are hydraulically fractured, both from vertical and horizontal wells, it has been standard practice for decades to treat the newly propped perforations with a gentle touch. The approach to this end is known as underflushing. When underflushing, the goal is to leave behind just a few barrels’ worth of proppant-laden slurry over the perforations before attempting to complete further stages. The motivation for this boils down to the need for an insurance policy against displacing the near-wellbore proppant pack and causing the open fracture face to pinch off before it ever has a chance to transmit hydrocarbons. Such carefulness comes at a price. Underflushing raises the risk of needing a cleanout before oil can flow optimally to surface. This not only delays the arrival of first oil, it means extra equipment and personnel are required. However, a more glaring downside to underflushing is that it appears to be an unnecessary precaution. The near-wellbore fracture area is, in fact, more robust than what conventional wisdom allows credit for.


Author(s):  
Maria Saridaki ◽  
Constantinos Mourlas

Findings from the educational literature and experimental observations, as well as case studies from field studies will be presented and discussed, in order to demonstrate how games are able to constitute a powerful educational and motivational medium in a SEN classroom.


Sign in / Sign up

Export Citation Format

Share Document