Reducing hardware complexity of linear DSP systems by iteratively eliminating two-term common subexpressions

Author(s):  
Anup Hosangadi ◽  
Farzan Fallah ◽  
Ryan Kastner
Author(s):  
Arvind Kakria ◽  
Trilok Chand Aseri

Background & Objective: Wireless communication has immensely grown during the past few decades due to significant demand for mobile access. Although cost-effective as compared to their wired counterpart, maintaining good quality-of-service (QoS) in these networks has always remained a challenge. Multiple-input Multiple-output (MIMO) systems, which consists of multiple transmitter and receiver antennas, have been widely acknowledged for their QoS and transmit diversity. Though suited for cellular base stations, MIMO systems are not suited for small-sized wireless nodes due to their hardware complexity, cost, and increased power requirements. Cooperative communication that allows relays, i.e. mobile or fixed nodes in a communication network, to share their resources and forward other node’s data to the destination node has substituted the MIMO systems nowadays. To harness the full benefit of cooperative communication, appropriate relay node selection is very important. This paper presents an efficient single-hop distributed relay supporting medium access control (MAC) protocol (EDSRS) that works in the single-hop environment and improves the energy efficiency and the life of relay nodes without compensating the throughput of the network. Methods: The protocol has been simulated using NS2 simulator. The proposed protocol is compared with energy efficient cooperative MAC protocol (EECOMAC) and legacy distributed coordination function (DCF) on the basis of throughput, energy efficiency, transmission delay and an end to end delay with various payload sizes. Result and Conclusion: The result of the comparison indicates that the proposed protocol (EDSRS) outperforms the other two protocols.


2021 ◽  
Vol 11 (12) ◽  
pp. 5523
Author(s):  
Qian Ye ◽  
Minyan Lu

The main purpose of our provenance research for DSP (distributed stream processing) systems is to analyze abnormal results. Provenance for these systems is not nontrivial because of the ephemerality of stream data and instant data processing mode in modern DSP systems. Challenges include but are not limited to an optimization solution for avoiding excessive runtime overhead, reducing provenance-related data storage, and providing it in an easy-to-use fashion. Without any prior knowledge about which kinds of data may finally lead to the abnormal, we have to track all transformations in detail, which potentially causes hard system burden. This paper proposes s2p (Stream Process Provenance), which mainly consists of online provenance and offline provenance, to provide fine- and coarse-grained provenance in different precision. We base our design of s2p on the fact that, for a mature online DSP system, the abnormal results are rare, and the results that require a detailed analysis are even rarer. We also consider state transition in our provenance explanation. We implement s2p on Apache Flink named as s2p-flink and conduct three experiments to evaluate its scalability, efficiency, and overhead from end-to-end cost, throughput, and space overhead. Our evaluation shows that s2p-flink incurs a 13% to 32% cost overhead, 11% to 24% decline in throughput, and few additional space costs in the online provenance phase. Experiments also demonstrates the s2p-flink can scale well. A case study is presented to demonstrate the feasibility of the whole s2p solution.


2014 ◽  
Vol 577 ◽  
pp. 786-789
Author(s):  
Shu Jing Gao ◽  
Rui Quan Zhang ◽  
Wei Zhang

A hash functionhMISRthat suitable for passive devices is proposed. Taking parallel LFSR as the basic componenthMISRprovides the security through one-wayness brought by the information loss in the process of compression. When implemented, the hardware complexity ofhMISRis much lower than Toeplitz hash.


Author(s):  
Mostafa Rizk ◽  
Amer Baghdadi ◽  
Michel Jézéquel

Emergent wireless communication standards, which are employed in different transmission environments, support various modulation schemes. High-order constellations are targeted to achieve high bandwidth efficiency. However, the complexity of the symbol-by-symbol Maximum A Posteriori (MAP) algorithm increases dramatically for these high-order modulation schemes. In order to reduce the hardware complexity, the suboptimal Max-Log-MAP, which is the direct transformation of the MAP algorithm into logarithmic domain, is alternatively implemented. In the literature, a great deal of research effort has been invested into Max-Log-MAP demapping. Several simplifications are presented to meet with specific constellations. In addition, the hardware implementations dedicated for Max-Log-MAP demapping vary greatly in terms of design choices, supported flexibility and performance criteria, making them a challenge to compare. This paper explores the published Max-Log-MAP algorithm simplifications and existing hardware demapper designs and presents an extensive review of the current literature. In-depth comparisons are drawn amongst the designs and different key performance characteristics are described, namely, achieved throughput, hardware resource requirements and flexibility. This survey should facilitate fair comparisons of future designs, as well as opportunities for improving the design of Max-Log-MAP demappers.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3540 ◽  
Author(s):  
Yurong Wang ◽  
Aijun Liu ◽  
Kui Xu ◽  
Xiaochen Xia

Energy supply and information backhaul are critical problems for wireless sensor networks deployed in remote places with poor infrastructure. To deal with these problems, this paper proposes an airborne massive multiple-input multiple-output (MIMO) system for wireless energy transfer (WET) and information transmission. An air platform (AP) equipped with a two-dimensional rectangular antenna array is employed to broadcast energy and provide wireless access for ground sensors. By exploiting the statistical property of air-terrestrial MIMO channels, the energy and information beamformers are jointly designed to maximize the average received signal-to-interference-plus-noise ratio (SINR), which gives rise to a statistical max-SINR beamforming scheme. The scheme does not rely on the instantaneous channel state information, but still requires large numbers of RF chains at AP. To deal with this problem, a heuristic strongest-path energy and information beamforming scheme is proposed, which can be implemented in the analog-domain with low computational and hardware complexity. The analysis of the relation between the two schemes reveals that, with proper sensor scheduling, the strongest-path beamforming is equivalent to the statistical max-SINR beamforming when the number of AP antennas tends to infinity. Using the asymptotic approximation of average received SINR at AP, the system parameters, including transmit power, number of active antennas of AP and duration of WET phase, are optimized jointly to maximize the system energy efficiency. The simulation results demonstrate that the proposed schemes achieve a good tradeoff between system performance and complexity.


2013 ◽  
Vol 11 (1) ◽  
pp. 2182-2188
Author(s):  
Pallavali Radha ◽  
C Surekha ◽  
U Sesadri

To provide switching capacity in terabit or petabit uses core routers in multipath switching systems (MPS). Without disturbing the order of intra flow packets, the load balance across multiple paths is the main issue of MPS design phase. The performance is not good through heavy tailed flow size distribution in flow based hashing algorithm. Our proposed novel scheme consist the HA Proxy very fast and reliable solution offering high availability, load balancing, and proxying for TCP and HTTP-based applications. To process Layer7 of web site or to provide persistence to the website this scheme is very well suited for heavy load web sites crawling and flow slices are generated through Flow Slice (FS) that halt each flow at every intra flow spell larger than a slicing threshold and balances the load. The study analysis on traces of Internet, our scheme is optimal in load balancing performance through FS and the slicing threshold we set to 1 to 4 ms. We neglected out of order packets limits of probability 1/106 on three prominent MPSs with little hardware complexity and twice of the internal speedup. The theoretical analysis proved that this and trace driven prototype simulations are validated. 


Sign in / Sign up

Export Citation Format

Share Document