An example of integrating legal case based reasoning with object-oriented rule-based systems

Author(s):  
George Vossos ◽  
John Zeleznikow ◽  
Tharam Dillon ◽  
Vivian Vossos
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Arnan Dwika Diasmara ◽  
Aditya Wikan Mahastama ◽  
Antonius Rachmat Chrismanto

Abstract. Intelligent System of the Battle of Honor Board Game with Decision Making and Machine Learning. The Battle of Honor is a board game where 2 players face each other to bring down their opponent's flag. This game requires a third party to act as the referee because the players cannot see each other's pawns during the game. The solution to this is to implement Rule-Based Systems (RBS) on a system developed with Unity to support the referee's role in making decisions based on the rules of the game. Researchers also develop Artificial Intelligence (AI) as opposed to applying Case-Based reasoning (CBR). The application of CBR is supported by the nearest neighbor algorithm to find cases that have a high degree of similarity. In the basic test, the results of the CBR test were obtained with the highest formulated accuracy of the 3 examiners, namely 97.101%. In testing the AI scenario as a referee, it is analyzed through colliding pieces and gives the right decision in determining victoryKeywords: The Battle of Honor, CBR, RBS, unity, AIAbstrak. The Battle of Honor merupakan permainan papan dimana 2 pemain saling berhadapan untuk menjatuhkan bendera lawannya. Permainan ini membutuhkan pihak ketiga yang berperan sebagai wasit karena pemain yang saling berhadapan tidak dapat saling melihat bidak lawannya. Solusi dari hal tersebut yaitu mengimplementasikan Rule-Based Systems (RBS) pada sistem yang dikembangkan dengan Unity untuk mendukung peran wasit dalam memberikan keputusan berdasarkan aturan permainan. Peneliti juga mengembangkan Artificial Intelligence (AI) sebagai lawan dengan menerapkan Case-Based reasoning (CBR). Penerapan CBR didukung dengan algoritma nearest neighbour untuk mencari kasus yang memiliki tingkat kemiripan yang tinggi. Pada pengujian dasar didapatkan hasil uji CBR dengan accuracy yang dirumuskan tertinggi dari 3 penguji yaitu 97,101%. Pada pengujian skenario AI sebagai wasit dianalisis lewat bidak yang bertabrakan dan memberikan keputusan yang tepat dalam menentukan kemenangan.Kata Kunci: The Battle of Honor, CBR, RBS, unity, AI


Author(s):  
Cheng Xu ◽  
Yongjuan Wang ◽  
Changyi Liu

Abstract An approach synthesized with comprehensive evaluation & decision, rule-based reasoning, case-based reasoning and 3D parametric model are proposed to solve the problems of automation of the conceptual design of the mechanical products with middle complex level. A prototype software system for automatic rifle layout design was implemented using the object-oriented language — C++ based on this approach. The results running the prototype software system can well meet the demands of conceptual design of these complex level products.


2012 ◽  
Vol 26 (2) ◽  
pp. 292-305 ◽  
Author(s):  
Carlos Alberto Costa ◽  
Marcos Alexandre Luciano ◽  
Celson Pantoja Lima ◽  
Robert I.M. Young

Author(s):  
Tedy Rismawan ◽  
Sri Hartati

AbstrakCase-Based Reasoning (CBR) merupakan sistem penalaran komputer yang menggunakan pengetahuan lama untuk mengatasi masalah baru.CBR memberikan solusi terhadap kasus baru dengan melihat kasus lama yang paling mendekati kasus baru. Hal ini akan sangat bermanfaat karena dapat menghilangkan kebutuhan untuk mengekstrak model seperti yang dibutuhkan oleh sistem berbasis aturan. Penelitian ini mencoba untuk membangun suatu sistem Penalaran Berbasis Kasus untuk melakukan diagnosa penyakit THT (Telinga, Hidung dan Tenggorokan). Proses diagnosa dilakukan dengan cara memasukkan kasus baru (target case) yang berisi gejala-gejala ang akan didiagnosa ke dalam sistem, kemudian sistem akan melakukan proses indexing dengan metode backpropagation untuk memperoleh indeks dari kasus baru tersebut. Setelah memperoleh indeks, sistem selanjutnya melakukan proses perhitungan nilai similarity antara kasus baru dengan basis kasus yang memiliki indeks yang sama menggunakan metode cosine coefficient. Kasus yang diambil adalah kasus dengan nilai similarity paling tinggi. Jika suatu kasus tidak berhasil didiagnosa, maka akan dilakukan revisi kasus oleh pakar. Kasus yang berhasil direvisi akan disimpan ke dalam sistem untuk dijadikan pengetahuan baru bagi sistem. Hasil penelitian menunjukkan sistem penalaran berbasis kasus untuk mendiagnosa penyakit THT ini membantu paramedis dalam melakukan diagnosa. Hasil uji coba sistem terhadap 111 data kasus uji, terdapat 9 kasus yang memiliki nilai similarity di bawah 0.8.  Kata kunci—case-based reasoning, indexing, similarity, backpropagation, cosine coefficient Abstract Case-Based Reasoning (CBR) is a reasoning system that uses old knowledge to solve new problem. CBR provides solutions to new cases by looking at old case that comes closest to the new case. It will be very useful because it eliminates the need to extract the model as required by the rule-based systems. This studytriestoestablisha system forCBR for diagnosingdiseasesof ENT.Diagnosisprocessis done byinsertinga new casethat containsthe symptoms ofthe disease to bediagnosed, thenthe system willdo theindexingprocess with backpropagation method toobtainan indexofnewcases. Afterthat, the systemdo thecalculation of the valueof similaritybetweenthe newcasebycasebasiswhichhas thesame indexwithnew cases using cosine coefficient method. The casetaken isthe casewiththe highestsimilarityvalue. If acaseis not successfullydiagnosed, thecasewillbe revisedby theexperts and it can be used asnew knowledgefor thesystem. The results showedcase-basedreasoningsystemtodiagnosediseasesof ENTcan helpparamedicsin performingdiagnostics. The test results of 111 data test cases, obtained 9 cases that have similarity values below 0.8. Keywords—case-based reasoning, indexing, similarity, backpropagation, cosine coefficient


2013 ◽  
Vol 25 (5) ◽  
pp. 1141-1166 ◽  
Author(s):  
Henry Prakken ◽  
Adam Wyner ◽  
Trevor Bench-Capon ◽  
Katie Atkinson

2014 ◽  
Vol 945-949 ◽  
pp. 1707-1712
Author(s):  
Bin Shen ◽  
Shu Yu Zhao ◽  
Jia Hai Wang ◽  
Juergen Fleischer

Based on the authors previous work of developing an expert system for fault diagnosis of CNC machine tool, this paper studied the theory and method of CNC remote fault diagnosis expert system based on B/S, and presents schema and structure of the expert system in detailed. Case based reasoning is used for the multi-alarm diagnosis, and rule based reasoning is used for single-alarm diagnosis. At last fault diagnosis expert system was designed and developed making use of C# and ASP.NET.


Author(s):  
Daphne Odekerken ◽  
Floris Bex

We propose an agent architecture for transparent human-in-the-loop classification. By combining dynamic argumentation with legal case-based reasoning, we create an agent that is able to explain its decisions at various levels of detail and adapts to new situations. It keeps the human analyst in the loop by presenting suggestions for corrections that may change the factors on which the current decision is based and by enabling the analyst to add new factors. We are currently implementing the agent for classification of fraudulent web shops at the Dutch Police.


2008 ◽  
Vol 16 (4) ◽  
pp. 361-387 ◽  
Author(s):  
Adam Wyner

Sign in / Sign up

Export Citation Format

Share Document