Frontiers in Artificial Intelligence and Applications - Legal Knowledge and Information Systems
Latest Publications


TOTAL DOCUMENTS

39
(FIVE YEARS 39)

H-INDEX

0
(FIVE YEARS 0)

Published By IOS Press

9781643681504, 9781643681511

Author(s):  
Rohan Nanda ◽  
Llio Humphreys ◽  
Lorenzo Grossio ◽  
Adebayo Kolawole John

This paper presents a multilingual legal information retrieval system for mapping recitals to articles in European Union (EU) directives and normative provisions in national legislation. Such a system could be useful for purposive interpretation of norms. A previous work on mapping recitals and normative provisions was limited to EU legislation in English and only one lexical text similarity technique. In this paper, we develop state-of-the-art text similarity models to investigate the interplay between directive recitals, directive (sub-)articles and provisions of national implementing measures (NIMs) on a multilingual corpus (from Ireland, Italy and Luxembourg). Our results indicate that directive recitals do not have a direct influence on NIM provisions, but they sometimes contain additional information that is not present in the transposed directive sub-article, and can therefore facilitate purposive interpretation.


Author(s):  
Daphne Odekerken ◽  
Floris Bex

We propose an agent architecture for transparent human-in-the-loop classification. By combining dynamic argumentation with legal case-based reasoning, we create an agent that is able to explain its decisions at various levels of detail and adapts to new situations. It keeps the human analyst in the loop by presenting suggestions for corrections that may change the factors on which the current decision is based and by enabling the analyst to add new factors. We are currently implementing the agent for classification of fraudulent web shops at the Dutch Police.


Author(s):  
Ioannis Chrysakis ◽  
Giorgos Flouris ◽  
George Ioannidis ◽  
Maria Makridaki ◽  
Theodore Patkos ◽  
...  

The utilisation of personal data by mobile apps is often hidden behind vague Privacy Policy documents, which are typically lengthy, difficult to read (containing legal terms and definitions) and frequently changing. This paper discusses a suite of tools developed in the context of the CAP-A project, aiming to harness the collective power of users to improve their privacy awareness and to promote privacy-friendly behaviour by mobile apps. Through crowdsourcing techniques, users can evaluate the privacy friendliness of apps, annotate and understand Privacy Policy documents, and help other users become aware of privacy-related aspects of mobile apps and their implications, whereas developers and policy makers can identify trends and the general stance of the public in privacy-related matters. The tools are available for public use in: https://cap-a.eu/tools/.


Author(s):  
Huihui Xu ◽  
Jaromír Šavelka ◽  
Kevin D. Ashley

Argument mining, a subfield of natural language processing and text mining, is a process of extracting argumentative text portions and identifying the role the selected texts play. Legal argument mining targets the argumentative parts of a legal text. In order to better understand how to apply legal argument mining as a step toward improving case summarization, we have assembled a sizeable set of cases and human-expert-prepared summaries annotated in terms of legal argument triples that capture the most important skeletal argument structures in a case. We report the results of applying multiple machine learning techniques to demonstrate and analyze the advantages and disadvantages of different methods to identify sentence components of these legal argument triples.


Author(s):  
Masha Medvedeva ◽  
Xiao Xu ◽  
Martijn Wieling ◽  
Michel Vols

In this paper we present the web platform JURI SAYS that automatically predicts decisions of the European Court of Human Rights based on communicated cases, which are published by the court early in the proceedings and are often available many years before the final decision is made. Our system therefore predicts future judgements of the court. The platform is available at jurisays.com and shows the predictions compared to the actual decisions of the court. It is automatically updated every month by including the prediction for the new cases. Additionally, the system highlights the sentences and paragraphs that are most important for the prediction (i.e. violation vs. no violation of human rights).


Author(s):  
Francesco Sovrano ◽  
Monica Palmirani ◽  
Fabio Vitali

This paper presents the Open Knowledge Extraction (OKE) tools combined with natural language analysis of the sentence in order to enrich the semantic of the legal knowledge extracted from legal text. In particular the use case is on international private law with specific regard to the Rome I Regulation EC 593/2008, Rome II Regulation EC 864/2007, and Brussels I bis Regulation EU 1215/2012. A Knowledge Graph (KG) is built using OKE and Natural Language Processing (NLP) methods jointly with the main ontology design patterns defined for the legal domain (e.g., event, time, role, agent, right, obligations, jurisdiction). Using critical questions, underlined by legal experts in the domain, we have built a question answering tool capable to support the information retrieval and to answer to these queries. The system should help the legal expert to retrieve the relevant legal information connected with topics, concepts, entities, normative references in order to integrate his/her searching activities.


Author(s):  
Mirna El Ghosh ◽  
Habib Abdulrab

In this paper, we present an ontology-based liability decision support task in the international maritime law, specifically the domain of carriage of goods by sea. We analyze the liabilities of the involved legal agents (carriers and shippers) in case of loss or damage of goods. Thus, a well-founded legal domain ontology, named CargO-S, is used. CargO-S has been developed using an ontology-driven conceptual modeling process, supported by reusing foundational and legal core ontologies. In this work, we demonstrate the usability of CargO-S to design and implement a set of chained rules describing the procedural aspect of the liabilities legal rules. Finally, we employ these rules in a liability rule-based decision support task using a real case study.


Author(s):  
Giovanni Iacca ◽  
Francesca Lagioia ◽  
Andrea Loreggia ◽  
Giovanni Sartor

As Autonomous vehicles (AVs) are entering shared roads, the challenge of designing and implementing a completely autonomous vehicle is still open. Aside from technological issues regarding how to manage the complexity of the environment, AVs raise difficult legal issues and ethical dilemmas, especially in unavoidable accident scenarios. In this context, a vast speculation depicting moral dilemmas has developed in recent years. A new perspective was proposed: an “Ethical Knob” (EK), enabling passengers to ethically customise their AVs, namely, to choose between different settings corresponding to different moral approaches or principles. In this contribution we explore how an AV can automatically learn to determine the value of its “Ethical Knob” in order to achieve a trade-off between the ethical preferences of passengers and social values, learning from experienced instances of collision. To this end, we propose a novel approach based on a genetic algorithm to optimize a population of neural networks. We report a detailed description of simulation experiments as well as possible applications.


Author(s):  
Kartik Chawla ◽  
Joris Hulstijn

In interacting with digital apps and services, users create digital identities and generate massive amounts of associated personal data. The relationship between the user and the service provider in such cases is, inter alia, a principal-agent relationship governed by a ‘contract’. This contract is provided mostly in natural language text, however, and remains opaque to users. The need of the hour is multi-faceted documentation represented in machine-readable, natural language and graphical formats, to enable tools such as smart contracts and privacy assistants which could assist users in negotiating and monitoring agreements. In this paper, we develop a Taxonomy for the Representation of Privacy and Data Control Signals. We focus on ‘signals’ because they play a crucial role in communicating how a service provider distinguishes itself in a market. We follow the methodology for developing taxonomies proposed by Nickerson et al. We start with a grounded analysis of the documentation of four smartphone-based fitness activity trackers, and compare these to insights from literature. We present the results of the first two iterations of the design cycle. Validation shows that the Taxonomy answers (10/14) relevant questions from Perera et al.’s requirements for the knowledge-modelling of privacy policies fully, (2/14) partially, and fails to answer (2/14). It also covers signals not identified by the checklist. We also validate the Taxonomy by applying it to extracts from documentation, and argue that it shows potential for the annotation and evaluation of privacy policies as well.


Author(s):  
Alina Petrova ◽  
John Armour ◽  
Thomas Lukasiewicz

Predicting the outcome of a legal process has recently gained considerable research attention. Numerous attempts have been made to predict the exact outcome, judgment, charge, and fines of a case given the textual description of its facts and metadata. However, most of the effort has been focused on Chinese and European law, for which there exist annotated datasets. In this paper, we introduce CASELAW4 — a new dataset of 350k common law judicial decisions from the U.S. Caselaw Access Project, of which 250k have been automatically annotated with binary outcome labels of AFFIRM or REVERSE by our hybrid learning system. To our knowledge, it is the first attempt to perform outcome extraction (a) on such a large volume of English-language judicial opinions, (b) on the Caselaw Access Project data, and (c) on US State Courts of Appeal cases, and it paves the way to large-scale outcome prediction and advanced legal analytics using U.S. Case Law. We set up baseline results for the outcome extraction task on the new dataset, achieving an F-measure of 82.32%.


Sign in / Sign up

Export Citation Format

Share Document