scholarly journals Case-Based Reasoning untuk Diagnosa Penyakit THT (Telinga Hidung dan Tenggorokan)

Author(s):  
Tedy Rismawan ◽  
Sri Hartati

AbstrakCase-Based Reasoning (CBR) merupakan sistem penalaran komputer yang menggunakan pengetahuan lama untuk mengatasi masalah baru.CBR memberikan solusi terhadap kasus baru dengan melihat kasus lama yang paling mendekati kasus baru. Hal ini akan sangat bermanfaat karena dapat menghilangkan kebutuhan untuk mengekstrak model seperti yang dibutuhkan oleh sistem berbasis aturan. Penelitian ini mencoba untuk membangun suatu sistem Penalaran Berbasis Kasus untuk melakukan diagnosa penyakit THT (Telinga, Hidung dan Tenggorokan). Proses diagnosa dilakukan dengan cara memasukkan kasus baru (target case) yang berisi gejala-gejala ang akan didiagnosa ke dalam sistem, kemudian sistem akan melakukan proses indexing dengan metode backpropagation untuk memperoleh indeks dari kasus baru tersebut. Setelah memperoleh indeks, sistem selanjutnya melakukan proses perhitungan nilai similarity antara kasus baru dengan basis kasus yang memiliki indeks yang sama menggunakan metode cosine coefficient. Kasus yang diambil adalah kasus dengan nilai similarity paling tinggi. Jika suatu kasus tidak berhasil didiagnosa, maka akan dilakukan revisi kasus oleh pakar. Kasus yang berhasil direvisi akan disimpan ke dalam sistem untuk dijadikan pengetahuan baru bagi sistem. Hasil penelitian menunjukkan sistem penalaran berbasis kasus untuk mendiagnosa penyakit THT ini membantu paramedis dalam melakukan diagnosa. Hasil uji coba sistem terhadap 111 data kasus uji, terdapat 9 kasus yang memiliki nilai similarity di bawah 0.8.  Kata kunci—case-based reasoning, indexing, similarity, backpropagation, cosine coefficient Abstract Case-Based Reasoning (CBR) is a reasoning system that uses old knowledge to solve new problem. CBR provides solutions to new cases by looking at old case that comes closest to the new case. It will be very useful because it eliminates the need to extract the model as required by the rule-based systems. This studytriestoestablisha system forCBR for diagnosingdiseasesof ENT.Diagnosisprocessis done byinsertinga new casethat containsthe symptoms ofthe disease to bediagnosed, thenthe system willdo theindexingprocess with backpropagation method toobtainan indexofnewcases. Afterthat, the systemdo thecalculation of the valueof similaritybetweenthe newcasebycasebasiswhichhas thesame indexwithnew cases using cosine coefficient method. The casetaken isthe casewiththe highestsimilarityvalue. If acaseis not successfullydiagnosed, thecasewillbe revisedby theexperts and it can be used asnew knowledgefor thesystem. The results showedcase-basedreasoningsystemtodiagnosediseasesof ENTcan helpparamedicsin performingdiagnostics. The test results of 111 data test cases, obtained 9 cases that have similarity values below 0.8. Keywords—case-based reasoning, indexing, similarity, backpropagation, cosine coefficient

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Murien Nugraheni ◽  
Sri Hartati

Case-Based Reasoning (CBR) is a computer system that uses old knowledge to solve new problems. CBR provide solutions for new cases by looking at an old case that comes closest to the new case. It will be very useful because it eliminates the need to extract the model as required by the rules-based system. Moreover, CBR can also be started from a small amount of knowledge, because the knowledge of CBR can be increased gradually when a case is added.This study tries to establish a system for Case-Based Reasoning System to Support Diagnosis of Diseases in Poultry by looking at the characteristics of existing symptoms in poultry. Diagnosis process is done by inserting a new cases that contain the symptoms of the disease to be diagnosed into the system, then the system will do the indexing process or classification with C4.5 algorithm method to obtain an index of new cases. After obtaining an index of the cases, then the system do the calculating of the value of similarity between the new case by case which has the same index with new cases using Cosine Similarity method. The case taken is the case with the highest similarity value. If a case is not successfully diagnosed, then the case will be revised by experts. Revised successful cases will be stored into the system to be used as new knowledge for the system.The results showed case-based reasoning system to diagnose disease of poultry can help experts and farmers in performing diagnostics. The test results of 30 test cases, system has been to produce similarity of 28 cases (93.33%) and obtained 2 cases (6.67%) have similarity values below 0.8 will be revised by experts.Keywords: CBR, poultry, indexing, similarity, cosine similarity


2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Arnan Dwika Diasmara ◽  
Aditya Wikan Mahastama ◽  
Antonius Rachmat Chrismanto

Abstract. Intelligent System of the Battle of Honor Board Game with Decision Making and Machine Learning. The Battle of Honor is a board game where 2 players face each other to bring down their opponent's flag. This game requires a third party to act as the referee because the players cannot see each other's pawns during the game. The solution to this is to implement Rule-Based Systems (RBS) on a system developed with Unity to support the referee's role in making decisions based on the rules of the game. Researchers also develop Artificial Intelligence (AI) as opposed to applying Case-Based reasoning (CBR). The application of CBR is supported by the nearest neighbor algorithm to find cases that have a high degree of similarity. In the basic test, the results of the CBR test were obtained with the highest formulated accuracy of the 3 examiners, namely 97.101%. In testing the AI scenario as a referee, it is analyzed through colliding pieces and gives the right decision in determining victoryKeywords: The Battle of Honor, CBR, RBS, unity, AIAbstrak. The Battle of Honor merupakan permainan papan dimana 2 pemain saling berhadapan untuk menjatuhkan bendera lawannya. Permainan ini membutuhkan pihak ketiga yang berperan sebagai wasit karena pemain yang saling berhadapan tidak dapat saling melihat bidak lawannya. Solusi dari hal tersebut yaitu mengimplementasikan Rule-Based Systems (RBS) pada sistem yang dikembangkan dengan Unity untuk mendukung peran wasit dalam memberikan keputusan berdasarkan aturan permainan. Peneliti juga mengembangkan Artificial Intelligence (AI) sebagai lawan dengan menerapkan Case-Based reasoning (CBR). Penerapan CBR didukung dengan algoritma nearest neighbour untuk mencari kasus yang memiliki tingkat kemiripan yang tinggi. Pada pengujian dasar didapatkan hasil uji CBR dengan accuracy yang dirumuskan tertinggi dari 3 penguji yaitu 97,101%. Pada pengujian skenario AI sebagai wasit dianalisis lewat bidak yang bertabrakan dan memberikan keputusan yang tepat dalam menentukan kemenangan.Kata Kunci: The Battle of Honor, CBR, RBS, unity, AI


2012 ◽  
Vol 26 (2) ◽  
pp. 292-305 ◽  
Author(s):  
Carlos Alberto Costa ◽  
Marcos Alexandre Luciano ◽  
Celson Pantoja Lima ◽  
Robert I.M. Young

Author(s):  
Bjørn Magnus Mathisen ◽  
Kerstin Bach ◽  
Agnar Aamodt

AbstractAquaculture as an industry is quickly expanding. As a result, new aquaculture sites are being established at more exposed locations previously deemed unfit because they are more difficult and resource demanding to safely operate than are traditional sites. To help the industry deal with these challenges, we have developed a decision support system to support decision makers in establishing better plans and make decisions that facilitate operating these sites in an optimal manner. We propose a case-based reasoning system called aquaculture case-based reasoning (AQCBR), which is able to predict the success of an aquaculture operation at a specific site, based on previously applied and recorded cases. In particular, AQCBR is trained to learn a similarity function between recorded operational situations/cases and use the most similar case to provide explanation-by-example information for its predictions. The novelty of AQCBR is that it uses extended Siamese neural networks to learn the similarity between cases. Our extensive experimental evaluation shows that extended Siamese neural networks outperform state-of-the-art methods for similarity learning in this task, demonstrating the effectiveness and the feasibility of our approach.


2011 ◽  
Vol 38 (12) ◽  
pp. 6528-6538 ◽  
Author(s):  
Nishikant Mishra ◽  
Sanja Petrovic ◽  
Santhanam Sundar

Sign in / Sign up

Export Citation Format

Share Document