A micro power management system and maximum output power control for solar energy harvesting applications

Author(s):  
Hui Shao ◽  
Chi-Ying Tsui ◽  
Wing-Hung Ki
Author(s):  
Alexander Schlichting ◽  
Michael Shafer ◽  
Ephrahim Garcia

Solar energy harvesting possesses relatively high energy and power densities when compared to other energy harvesting methods. However, solar energy harvesting applications are severely limited by diurnal cycles and weather patterns. For biological applications, such as avian bio-loggers, the subject’s activity levels and location introduce further variability into the availability of solar energy. This work focuses on the challenges associated with developing a multi-source energy harvesting solution and overall power management system for an avian bio-logger. It uses an ATmega128RFA1 microcontroller along with lithium batteries and both a solar and piezoelectric energy harvester. The power management system and microcontroller operation were tested using a solar harvester.


2014 ◽  
Vol 976 ◽  
pp. 159-163 ◽  
Author(s):  
Roberto Ambrosio ◽  
Hector Gonzalez ◽  
Mario Moreno ◽  
Alfonso Torres ◽  
Rafael Martinez ◽  
...  

In this work is presented a study of a piezoelectric energy harvesting device used for low power consumption applications operating at relative low frequency. The structure consists of a cantilever beam made by Lead Zirconate Titanate (PZT) layer with two gold electrodes for electrical contacts. The piezoelectric material was selected taking into account its high coupling coefficients. Different structures were analyzed with variations in its dimensions and shape of the cantilever. The devices were designed to operate at the resonance frequency to get maximum electrical power output. The structures were simulated using finite element (FE) software. The analysis of the harvesting devices was performed in order to investigate the influence of the geometric parameters on the output power and the natural frequency. To validate the simulation results, an experiment with a PZT cantilever with brass substrate was carried out. The experimental data was found to be very close to simulation data. The results indicate that large structures, in the order of millimeters, are the ideal for piezoelectric energy harvesting devices providing a maximum output power in the range of mW


2012 ◽  
Vol 51 (10S) ◽  
pp. 10NF08 ◽  
Author(s):  
Takahiro Kato ◽  
Takuma Miyake ◽  
Daisuke Tashima ◽  
Tatsuya Sakoda ◽  
Masahisa Otsubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document