scholarly journals A novel generative encoding for evolving modular, regular and scalable networks

Author(s):  
Marcin Suchorzewski ◽  
Jeff Clune
Author(s):  
Jeff Clune ◽  
Benjamin E. Beckmann ◽  
Charles Ofria ◽  
Robert T. Pennock
Keyword(s):  

2003 ◽  
Vol 7 (10) ◽  
pp. 511-513 ◽  
Author(s):  
B. Wydrowski ◽  
L.L.H. Andrew ◽  
M. Zukerman

2021 ◽  
Author(s):  
Cameron J Higgins ◽  
Diego Vidaurre ◽  
Nils Kolling ◽  
Yunzhe Liu ◽  
Tim Behrens ◽  
...  

An emerging goal in neuroscience is tracking what information is represented in brain activity over time as a participant completes some task. Whilst EEG and MEG offer millisecond temporal resolution of how activity patterns emerge and evolve, standard decoding methods present significant barriers to interpretability as they obscure the underlying spatial and temporal activity patterns. We instead propose the use of a generative encoding model framework that simultaneously infers the multivariate spatial patterns of activity and the variable timing at which these patterns emerge on individual trials. An encoding model inversion allows predictions to be made about unseen test data in the same way as in standard decoding methodology. These SpatioTemporally Resolved MVPA (STRM) models can be flexibly applied to a wide variety of experimental paradigms, including classification and regression tasks. We show that these models provide insightful maps of the activity driving predictive accuracy metrics; demonstrate behaviourally meaningful variation in the timing of pattern emergence on individual trials; and achieve predictive accuracies that are either equivalent or surpass those achieved by more widely used methods. This provides a new avenue for investigating the brain's representational dynamics and could ultimately support more flexible experimental designs in future.


2012 ◽  
Vol 12 (3) ◽  
pp. 66-75 ◽  
Author(s):  
Haocheng Shen ◽  
Jason Yosinski ◽  
Petar Kormushev ◽  
Darwin G. Caldwell ◽  
Hod Lipson

Abstract Legged robots are uniquely privileged over their wheeled counterparts in their potential to access rugged terrain. However, designing walking gaits by hand for legged robots is a difficult and time-consuming process, so we seek algorithms for learning such gaits to automatically using real world experimentation. Numerous previous studies have examined a variety of algorithms for learning gaits, using an assortment of different robots. It is often difficult to compare the algorithmic results from one study to the next, because the conditions and robots used vary. With this in mind, we have used an open-source, 3D printed quadruped robot called QuadraTot, so the results may be verified, and hopefully improved upon, by any group so desiring. Because many robots do not have accurate simulators, we test gait-learning algorithms entirely on the physical robot. Previous studies using the QuadraTot have compared parameterized splines, the HyperNEAT generative encoding and genetic algorithm. Among these, the research on the genetic algorithm was conducted by (G l e t t e et al., 2012) in a simulator and tested on a real robot. Here we compare these results to an algorithm called Policy learning by Weighting Exploration with the Returns, or RL PoWER. We report that this algorithm has learned the fastest gait through only physical experiments yet reported in the literature, 16.3% faster than reported for HyperNEAT. In addition, the learned gaits are less taxing on the robot and more repeatable than previous record-breaking gaits.


Sign in / Sign up

Export Citation Format

Share Document