Adaptive backstepping sliding mode controller with PID sliding surface for a co-ordinated links (COOL) robotic arm

Author(s):  
Nabanita Adhikary ◽  
Chitralekha Mahanta
Author(s):  
Chong Chee Soon ◽  
Rozaimi Ghazali ◽  
Hazriq Izzuan Zaafar ◽  
Sahazati Md. Rozali ◽  
Yahaya Md. Sam ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 168781401877863 ◽  
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Rui Ding ◽  
Mingjie Dong

The control of quadrotor equipped with a robotic arm has received growing challenges. This article proposes a new adaptive control strategy of quadrotor equipped with a 2-degree-of-freedom robotic arm. To consider the positional variety of the center of gravity caused by the motion of the robotic arm, the kinematic and dynamic models are built. Based on the presented models, a backstepping and sliding mode controller with a terminal sliding mode manifold is first applied to cope with the condition in which the robotic arm is motionless relative to the quadrotor. As the evolvement of the backstepping and sliding mode controller, a novel adaptive backstepping and sliding mode controller is then designed for the vehicle with the robotic arm wavering. The robustness and effectiveness of the proposed control law are investigated through both simulations and flight tests. With the proposed control laws, several simulations are conducted in conditions of both a variable and a constant center of gravity, and the performance of hovering is tested with a variable center of gravity in an experiment. Overall results show that the proposed adaptive backstepping control could estimate and compensate the variable center of gravity which may seriously influence the stabilization of quadrotor flying in the air.


2017 ◽  
Vol 105 ◽  
pp. 235-239 ◽  
Author(s):  
Chong Chee Soon ◽  
Rozaimi Ghazali ◽  
Hazriq Izzuan Jaafar ◽  
Sharifah Yuslinda Syed Hussien

2016 ◽  
Vol 22 (10) ◽  
pp. 2734-2737
Author(s):  
Batool Abdulsamad Alkharasani ◽  
Mohd Khair Hassan ◽  
Rini Akmeliawati ◽  
Ribhan Zafira ◽  
Siti Anom Ahmed

2021 ◽  
pp. 107754632198920
Author(s):  
Zeinab Fallah ◽  
Mahdi Baradarannia ◽  
Hamed Kharrati ◽  
Farzad Hashemzadeh

This study considers the designing of the H ∞ sliding mode controller for a singular Markovian jump system described by discrete-time state-space realization. The system under investigation is subject to both matched and mismatched external disturbances, and the transition probability matrix of the underlying Markov chain is considered to be partly available. A new sufficient condition is developed in terms of linear matrix inequalities to determine the mode-dependent parameter of the proposed quasi-sliding surface such that the stochastic admissibility with a prescribed H ∞ performance of the sliding mode dynamics is guaranteed. Furthermore, the sliding mode controller is designed to assure that the state trajectories of the system will be driven onto the quasi-sliding surface and remain in there afterward. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design algorithms.


Sign in / Sign up

Export Citation Format

Share Document