Energy-efficient mid-term strategies for collision avoidance in crowd simulation

Author(s):  
Julien Bruneau ◽  
Julien Pettré
Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1484
Author(s):  
Yunyoung Choi ◽  
Jaehyung Park ◽  
Jiwon Jung ◽  
Younggoo Kwon

In home and building automation applications, wireless sensor devices need to be connected via unreliable wireless links within a few hundred milliseconds. Routing protocols in Low-power and Lossy Networks (LLNs) need to support reliable data transmission with an energy-efficient manner and short routing convergence time. IETF standardized the Point-to-Point RPL (P2P-RPL) routing protocol, in which P2P-RPL propagates the route discovery messages over the whole network. This leads to significant routing control packet overhead and a large amount of energy consumption. P2P-RPL uses the trickle algorithm to control the transmission rate of routing control packets. The non-deterministic message suppression nature of the trickle algorithm may generate a sub-optimal routing path. The listen-only period of the trickle algorithm may lead to a long network convergence time. In this paper, we propose Collision Avoidance Geographic P2P-RPL, which achieves energy-efficient P2P data delivery with a fast routing request procedure. The proposed algorithm uses the location information to limit the network search space for the desired route discovery to a smaller location-constrained forwarding zone. The Collision Avoidance Geographic P2P-RPL also dynamically selects the listen-only period of the trickle timer algorithm based on the transmission priority related to geographic position information. The location information of each node is obtained from the Impulse-Response Ultra-WideBand (IR-UWB)-based cooperative multi-hop self localization algorithm. We implement Collision Avoidance Geographic P2P-RPL on Contiki OS, an open-source operating system for LLNs and the Internet of Things. The performance results show that the Collision Avoidance Geographic P2P-RPL reduced the routing control packet overheads, energy consumption, and network convergence time significantly. The cooperative multi-hop self localization algorithm improved the practical implementation characteristics of the P2P-RPL protocol in real world environments. The collision avoidance algorithm using the dynamic trickle timer increased the operation efficiency of the P2P-RPL under various wireless channel conditions with a location-constrained routing space.


2018 ◽  
Vol 103 (3) ◽  
pp. 2515-2528
Author(s):  
Santosh Kumar ◽  
Sudhir ◽  
Umesh Kumar Tiwari

2009 ◽  
Vol 17 (3) ◽  
pp. 217 ◽  
Author(s):  
Cherif Foudil ◽  
Djedi Noureddine ◽  
Cedric Sanza ◽  
Yves Duthen

2015 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Ricardo Bustamante de Queiroz ◽  
Teófilo Dutra ◽  
Creto Vidal ◽  
Joaquim Cavalcante-Neto

Crowd Simulation is very important in many virtual reality applications, because it improves the sense of immersion of the users by making the population of agents in the environment to move as real crowds do. Recently, models for simulating crowds, in which each agent is equipped with a synthetic vision system, have shown interesting results regarding the natural manner in which the agents navigate inside the environment thanks to their visual perception. In this article, we propose an upgrade to the agent’s visual system with a panoramic view in order to allow an agent to expand its vision beyond the limit of 180o imposed by the common projection provided by rendering APIs. Also, we analyze different parameters, which are used to define the field of view, to investigate the influence they have on the agent’s behavior. The impacts that those changes may cause on the efficiency of the algorithms are also analysed. A visible change on the agent’s behavior is achieved by using the technique, with a slight loss of performance.


2013 ◽  
Vol 24 (3-4) ◽  
pp. 173-183 ◽  
Author(s):  
Jin Hyoung Park ◽  
Francisco Arturo Rojas ◽  
Hyun Seung Yang

Sign in / Sign up

Export Citation Format

Share Document