Smoothed aggregation multigrid for cloth simulation

2015 ◽  
Vol 34 (6) ◽  
pp. 1-13 ◽  
Author(s):  
Rasmus Tamstorf ◽  
Toby Jones ◽  
Stephen F. McCormick
2011 ◽  
Vol 31 (1) ◽  
pp. 289-292
Author(s):  
Zhong-hua LU ◽  
Ding-fang CHEN

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Vol 13 (15) ◽  
pp. 2938
Author(s):  
Feng Li ◽  
Haihong Zhu ◽  
Zhenwei Luo ◽  
Hang Shen ◽  
Lin Li

Separating point clouds into ground and nonground points is an essential step in the processing of airborne laser scanning (ALS) data for various applications. Interpolation-based filtering algorithms have been commonly used for filtering ALS point cloud data. However, most conventional interpolation-based algorithms have exhibited a drawback in terms of retaining abrupt terrain characteristics, resulting in poor algorithmic precision in these regions. To overcome this drawback, this paper proposes an improved adaptive surface interpolation filter with a multilevel hierarchy by using a cloth simulation and relief amplitude. This method uses three hierarchy levels of provisional digital elevation model (DEM) raster surfaces with thin plate spline (TPS) interpolation to separate ground points from unclassified points based on adaptive residual thresholds. A cloth simulation algorithm is adopted to generate sufficient effective initial ground seeds for constructing topographic surfaces with high quality. Residual thresholds are adaptively constructed by the relief amplitude of the examined area to capture complex landscape characteristics during the classification process. Fifteen samples from the International Society for Photogrammetry and Remote Sensing (ISPRS) commission are used to assess the performance of the proposed algorithm. The experimental results indicate that the proposed method can produce satisfying results in both flat areas and steep areas. In a comparison with other approaches, this method demonstrates its superior performance in terms of filtering results with the lowest omission error rate; in particular, the proposed approach retains discontinuous terrain features with steep slopes and terraces.


2015 ◽  
Vol 37 (1) ◽  
pp. A30-A54 ◽  
Author(s):  
Eran Treister ◽  
Irad Yavneh
Keyword(s):  

Acta Numerica ◽  
2017 ◽  
Vol 26 ◽  
pp. 591-721 ◽  
Author(s):  
Jinchao Xu ◽  
Ludmil Zikatanov

This paper provides an overview of AMG methods for solving large-scale systems of equations, such as those from discretizations of partial differential equations. AMG is often understood as the acronym of ‘algebraic multigrid’, but it can also be understood as ‘abstract multigrid’. Indeed, we demonstrate in this paper how and why an algebraic multigrid method can be better understood at a more abstract level. In the literature, there are many different algebraic multigrid methods that have been developed from different perspectives. In this paper we try to develop a unified framework and theory that can be used to derive and analyse different algebraic multigrid methods in a coherent manner. Given a smoother$R$for a matrix$A$, such as Gauss–Seidel or Jacobi, we prove that the optimal coarse space of dimension$n_{c}$is the span of the eigenvectors corresponding to the first$n_{c}$eigenvectors$\bar{R}A$(with$\bar{R}=R+R^{T}-R^{T}AR$). We also prove that this optimal coarse space can be obtained via a constrained trace-minimization problem for a matrix associated with$\bar{R}A$, and demonstrate that coarse spaces of most existing AMG methods can be viewed as approximate solutions of this trace-minimization problem. Furthermore, we provide a general approach to the construction of quasi-optimal coarse spaces, and we prove that under appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with respect to the size of the problem, the coefficient variation and the anisotropy. Our theory applies to most existing multigrid methods, including the standard geometric multigrid method, classical AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG and spectral AMGe.


Sign in / Sign up

Export Citation Format

Share Document