Experimental Works on Dynamic Behavior of Laminated Composite Beam Incorporated with magneto-rheological fluid under Random Excitation

Author(s):  
Saman Momeni ◽  
Abolghassem Zabihollah ◽  
Mehdi Behzad
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Bindi You ◽  
Zhihui Gao ◽  
Jianmin Wen ◽  
Yiming Sun ◽  
Peibo Hao ◽  
...  

A nonlinear dynamic modeling method for a spacecraft body composed of a laminated composite beam undergoing large rotation is proposed in this paper. To study the characteristics of a laminated composite beam attached to a spacecraft body for the dynamic systems, the deformation description of a laminated beam is established with the consideration of laying angles and laying layers, and the displacement-strain relations is acquired based on the global-local higher-order shear deformation theory. Accordingly, a nonlinear dynamic model of the spacecraft body composed of a laminated composite beam is deduced using Hamilton variational principle. And the complete coupling terms for the laminated material properties are considered unlike any other singular or unidirectional materials. Then, the dynamic behavior of the spacecraft system is analyzed by comparison of an orthogonal-symmetric, singular, and unidirectional laminated beam. The results show that the laminated composite structures have significant influences on the dynamics properties of spacecraft compared with conventional equivalent singular or unidirectional materials. Hence, the nonlinear model is well suitable for approaching the problem of coupling relationship between geometric nonlinearity and large rotation motions. These conclusions will have significant theory and engineering practice values for coupling dynamics properties of laminated beams.


2020 ◽  
Vol 8 (5) ◽  
pp. 3559-3565

In this Paper, the analysis of simply supported laminated composite beam having uniformly distributed load is performed. The solutions obtained in the form of the displacements and stresses for different layered cross ply laminated composite simply supported beams subjected uniformly distributed to load. Different aspect ratio consider for different results in terms of displacement, bending stress and shear stresses. The shear stresses are calculated with the help of equilibrium equation and constitutive relationship. Using displacement field including trigonometric function of laminated composite beams are derived from virtual displacement principle. There are axial displacement, transverse displacement, bending stress and shear stresses. In addition, Euler-Bernoulli (ETB), First order shear deformation beam theory (FSDT), Higher order shear deformation beam theory (HSDT) and Hyperbolic shear deformation beam theory (HYSDT) solution have been made for comparison and better accuracy of solutions and results of static analyses of laminated composite beams for simply supported laminated composite beam.


2013 ◽  
Vol 49 (2) ◽  
pp. 141-162 ◽  
Author(s):  
Ramazan-Ali Jafari-Talookolaei ◽  
Maryam Abedi ◽  
Mohammad H Kargarnovin ◽  
Mohammad T Ahmadian

Sign in / Sign up

Export Citation Format

Share Document