Toward Usable Network Traffic Policies for IoT Devices in Consumer Networks

Author(s):  
Nicholas DeMarinis ◽  
Rodrigo Fonseca
Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 923
Author(s):  
Darsh Patel ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang ◽  
Takshi Gupta ◽  
Aman Kataria

With an increasing number of Internet of Things (IoT) devices in the digital world, the attack surface for consumer networks has been increasing exponentially. Most of the compromised devices are used as zombies for attacks such as Distributed Denial of Services (DDoS). Consumer networks, unlike most commercial networks, lack the infrastructure such as managed switches and firewalls to easily monitor and block undesired network traffic. To counter such a problem with limited resources, this article proposes a hybrid anomaly detection approach that detects irregularities in the network traffic implicating compromised devices by using only elementary network information like Packet Size, Source, and Destination Ports, Time between subsequent packets, Transmission Control Protocol (TCP) Flags, etc. Essential features can be extracted from the available data, which can further be used to detect zero-day attacks. The paper also provides the taxonomy of various approaches to classify anomalies and description on capturing network packets inside consumer networks.


Data in Brief ◽  
2021 ◽  
pp. 107208
Author(s):  
Rajarshi Roy Chowdhury ◽  
Sandhya Aneja ◽  
Nagender Aneja ◽  
Pg Emeroylariffion Abas

2019 ◽  
Vol 18 (8) ◽  
pp. 1745-1759 ◽  
Author(s):  
Arunan Sivanathan ◽  
Hassan Habibi Gharakheili ◽  
Franco Loi ◽  
Adam Radford ◽  
Chamith Wijenayake ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 7273-7278
Author(s):  
M. Anwer ◽  
M. U. Farooq ◽  
S. M. Khan ◽  
W. Waseemullah

Many researchers have examined the risks imposed by the Internet of Things (IoT) devices on big companies and smart towns. Due to the high adoption of IoT, their character, inherent mobility, and standardization limitations, smart mechanisms, capable of automatically detecting suspicious movement on IoT devices connected to the local networks are needed. With the increase of IoT devices connected through internet, the capacity of web traffic increased. Due to this change, attack detection through common methods and old data processing techniques is now obsolete. Detection of attacks in IoT and detecting malicious traffic in the early stages is a very challenging problem due to the increase in the size of network traffic. In this paper, a framework is recommended for the detection of malicious network traffic. The framework uses three popular classification-based malicious network traffic detection methods, namely Support Vector Machine (SVM), Gradient Boosted Decision Trees (GBDT), and Random Forest (RF), with RF supervised machine learning algorithm achieving far better accuracy (85.34%). The dataset NSL KDD was used in the recommended framework and the performances in terms of training, predicting time, specificity, and accuracy were compared.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shilpa P. Khedkar ◽  
R. Aroul Canessane ◽  
Moslem Lari Najafi

An IoT is the communication of sensing devices linked to the Internet in order to communicate data. IoT devices have extremely critical reliability with an efficient and robust network condition. Based on enormous growth in devices and their connectivity, IoT contributes to the bulk of Internet traffic. Prediction of network traffic is very important function of any network. Traffic prediction is important to ensure good system efficiency and ensure service quality of IoT applications, as it relies primarily on congestion management, admission control, allocation of bandwidth to the system, and the identification of anomalies. In this paper, a complete overview of IoT traffic forecasting model using classic time series and artificial neural network is presented. For prediction of IoT traffic, real network traces are used. Prediction models are evaluated using MAE, RMSE, and R -squared values. The experimental results indicate that LSTM- and FNN-based predictive models are highly sensitive and can therefore be used to provide better performance as a timing sequence forecast model than the conventional traffic prediction techniques.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-23
Author(s):  
Morshed Chowdhury ◽  
Biplob Ray ◽  
Sujan Chowdhury ◽  
Sutharshan Rajasegarar

Due to the widespread functional benefits, such as supporting internet connectivity, having high visibility and enabling easy connectivity between sensors, the Internet of Things (IoT) has become popular and used in many applications, such as for smart city, smart health, smart home, and smart vehicle realizations. These IoT-based systems contribute to both daily life and business, including sensitive and emergency situations. In general, the devices or sensors used in the IoT have very limited computational power, storage capacity, and communication capabilities, but they help to collect a large amount of data as well as maintain communication with the other devices in the network. Since most of the IoT devices have no physical security, and often are open to everyone via radio communication and via the internet, they are highly vulnerable to existing and emerging novel security attacks. Further, the IoT devices are usually integrated with the corporate networks; in this case, the impact of attacks will be much more significant than operating in isolation. Due to the constraints of the IoT devices, and the nature of their operation, existing security mechanisms are less effective for countering the attacks that are specific to the IoT-based systems. This article presents a new insider attack, named loophole attack , that exploits the vulnerabilities present in a widely used IPv6 routing protocol in IoT-based systems, called RPL (Routing over Low Power and Lossy Networks). To protect the IoT system from this insider attack, a machine learning based security mechanism is presented. The proposed attack has been implemented using a Contiki IoT operating system that runs on the Cooja simulator, and the impacts of the attack are analyzed. Evaluation on the collected network traffic data demonstrates that the machine learning based approaches, along with the proposed features, help to accurately detect the insider attack from the network traffic data.


Sign in / Sign up

Export Citation Format

Share Document