scholarly journals A matrix expander Chernoff bound

Author(s):  
Ankit Garg ◽  
Yin Tat Lee ◽  
Zhao Song ◽  
Nikhil Srivastava
Keyword(s):  
2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ari Wibisono ◽  
Petrus Mursanto ◽  
Jihan Adibah ◽  
Wendy D. W. T. Bayu ◽  
May Iffah Rizki ◽  
...  

Abstract Real-time information mining of a big dataset consisting of time series data is a very challenging task. For this purpose, we propose using the mean distance and the standard deviation to enhance the accuracy of the existing fast incremental model tree with the drift detection (FIMT-DD) algorithm. The standard FIMT-DD algorithm uses the Hoeffding bound as its splitting criterion. We propose the further use of the mean distance and standard deviation, which are used to split a tree more accurately than the standard method. We verify our proposed method using the large Traffic Demand Dataset, which consists of 4,000,000 instances; Tennet’s big wind power plant dataset, which consists of 435,268 instances; and a road weather dataset, which consists of 30,000,000 instances. The results show that our proposed FIMT-DD algorithm improves the accuracy compared to the standard method and Chernoff bound approach. The measured errors demonstrate that our approach results in a lower Mean Absolute Percentage Error (MAPE) in every stage of learning by approximately 2.49% compared with the Chernoff Bound method and 19.65% compared with the standard method.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract The performance evaluation of free-space optical (FSO) communication using a digital pulse position modulation (DPPM) is investigated in this paper. The impact of atmospheric turbulence, scintillation and amplified spontaneous emission (ASE) noise has been taken into account. To reduce the turbulence-induced scintillation and optical power penalty, the use aperture averaging (AA) has been proposed in this paper. To evaluate the bit-error rate (BER) performance in the presence the atmospheric turbulence and amplified spontaneous emission (ASE), the use of the moment generation function (MGF) techniques are explained with the modified Chernoff bound (MCB) that is more accurate and an appropriate from Chernoff bound (CB). Such a system, which could provide a power efficient, a low cost, excessive flexibility and reliable or considered a massive solution in the bandwidth provision for future access networks, and together for higher data rate. The BER, are given for an optically preamplified DPPM FSO communication system impaired by pointing error (PE) and atmospheric turbulence combined, in addition to the ASE noise arising from the optical amplification. The gamma–gamma (GG) distribution model is used to characterize the whole range of turbulence conditions. The results reveal the superiority of DPPM with improved receiver sensitivity (at a binary data rate 2.5 Gbps and at typical FSO BER of 10 ^-9) of about 10 dB –11 dB for coding level (M) of 5 and optical link length (for turbulent interaction) of 2000 m more than an equivalent optically preamplified on-off keying non-return-to-zero (OOK-NRZ) approach, depending on the level of turbulence.


Author(s):  
Thomas P. W. Cope ◽  
Stefano Pirandola

AbstractThe class of quantum states known as Werner states have several interesting properties, which often serve to illuminate unusual properties of quantum information. Closely related to these states are the Holevo- Werner channels whose Choi matrices are Werner states. Exploiting the fact that these channels are teleportation covariant, and therefore simulable by teleportation, we compute the ultimate precision in the adaptive estimation of their channel-defining parameter. Similarly, we bound the minimum error probability affecting the adaptive discrimination of any two of these channels. In this case, we prove an analytical formula for the quantum Chernoff bound which also has a direct counterpart for the class of depolarizing channels. Our work exploits previous methods established in [Pirandola and Lupo, PRL


Sign in / Sign up

Export Citation Format

Share Document