Building Blocks for Identity Management and Protection for Smart Environments and Interactive Assistance Systems

Author(s):  
Pascal Birnstill ◽  
Jürgen Beyerer
2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Andrew Stewart

Decision advantage for the DoD and Combined Cyber Operations results from the secure, seamless, and rapid maneuver of data and information. In the DoD’s 2018 Artificial Intelligence Strategy, the DoD recognized that it must, “put in place key building blocks and platforms to scale and democratize access to AI. This includes creating a common foundation of shared data, reusable tools, frameworks and standards, and cloud and edge services.” More than ever, integrated, adaptive cyber operations provide the means of maneuver for data to enable DoD’s decision advantage-based goals. To support this vision, the integrated implementation three innovative cyber technologies must be rapidly realized across DoD Networks in order to execute cyber operations according to Commander’s Intent—at machine speed. Getting Information to the “edge” is what makes DoD competitive and provides advantage. The word “edge” in this context reflects the distributed individual platforms, sensors, and people who comprise the scale and scope of today’s globally networked DoD operations. That edge is creating the demand to access data and consume information as never before, and a greater need for more innovation to support DoD cyber operations on the DoD Information Network (DODIN). At the heart of the need for innovation is an increased demand for data and information, as well as the size and scale of networks and networking exploding without a proportionate growth in the IT resources to support today’s cyber operational demand. If the network continues to grow exponentially and must function as the medium of maneuver for the data that provides DoD decision advantage to the edge, then the DoD must deploy revolutionary innovations to reinvent the network as an integrated platform for cyber operations—across the enterprise and to the edge and implemented natively as hybrid multicloud-ready. Three innovative, next-generation networking technologies, integrated tightly together, offer the opportunity for DoD to provide revolutionary cyber operations capabilities across the DODIN and produce improved, data-enabled mission results. The scalable and seamless integration of: (1) advanced identity management, (2) software-defined networking, and (3) hybrid multicloud capabilities provides a Commander’s Intent-driven Cyber Platform implemented in a zero trust architecture that operates at machine speed and ensures decision advantage for the DoD.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 945 ◽  
Author(s):  
Rafael Torres Moreno ◽  
Jorge Bernal Bernabe ◽  
Jesús García Rodríguez ◽  
Tore Kasper Frederiksen ◽  
Michael Stausholm ◽  
...  

Privacy enhancing technologies (PETs) allow to achieve user’s transactions unlinkability across different online Service Providers. However, current PETs fail to guarantee unlinkability against the Identity Provider (IdP), which becomes a single point of failure in terms of privacy and security, and therefore, might impersonate its users. To address this issue, OLYMPUS EU project establishes an interoperable framework of technologies for a distributed privacy-preserving identity management based on cryptographic techniques that can be applied both to online and offline scenarios. Namely, distributed cryptographic techniques based on threshold cryptography are used to split up the role of the Identity Provider (IdP) into several authorities so that a single entity is not able to impersonate or track its users. The architecture leverages PET technologies, such as distributed threshold-based signatures and privacy attribute-based credentials (p-ABC), so that the signed tokens and the ABC credentials are managed in a distributed way by several IdPs. This paper describes the Olympus architecture, including its associated requirements, the main building blocks and processes, as well as the associated use cases. In addition, the paper shows how the Olympus oblivious architecture can be used to achieve privacy-preserving M2M offline transactions between IoT devices.


2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Newton Masinde ◽  
Kalman Graffi

Abstract The use of online social networks, such as Facebook and Twitter, has grown at a phenomenal rate. These platforms offer services that support interactions via messaging, chatting or audio/video conferencing, and also sharing of content. Most, if not all, of these platforms use centralized computing systems; therefore, the control and management of the systems lies entirely in the hands of one provider, who must be trusted to treat the data and communication traces securely. As a zero-trust alternative, peer-to-peer (P2P) technologies promise to support end-to-end communication, uncompromising access control, anonymity and resilience against censorship and massive data leaks through misused trust. The goals of this survey are threefold. First, the survey elaborates the properties of P2P-based online social networks and defines the requirements for such (zero-trust) platforms. Second, it gives an exposition of the building blocks for P2P frameworks that allow the creation of such sophisticated and demanding applications, such as user/identity management, reliable data storage, secure communication, access control and general-purpose extensibility, which are not properly addressed in other P2P surveys. As a third point, it gives a comprehensive analysis of proposed P2P-based online social network applications, frameworks and architectures by exploring the technical details, inter-dependencies and maturity of these solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Reza Soltani ◽  
Uyen Trang Nguyen ◽  
Aijun An

Self-sovereign identity is the next evolution of identity management models. This survey takes a journey through the origin of identity, defining digital identity and progressive iterations of digital identity models leading up to self-sovereign identity. It then states the relevant research initiatives, platforms, projects, and regulatory frameworks, as well as the building blocks including decentralized identifiers, verifiable credentials, distributed ledger, and various privacy engineering protocols. Finally, the survey provides an overview of the key challenges and research opportunities around self-sovereign identity.


1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Sign in / Sign up

Export Citation Format

Share Document