scholarly journals Multi-beam uncoordinated random access MAC for underwater communication networks

Author(s):  
Bryan Ehlers ◽  
Ananya Sen Gupta ◽  
Ryan McCarthy
Author(s):  
Stavroula Vassaki ◽  
George Pitsiladis ◽  
Stavros E. Sagkriotis ◽  
Athanasios D. Panagopoulos

Machine type communications (or Machine-to-Machine / M2M) communications have emerged as an important paradigm in wireless communication networks. The current M2M standardization activities are presented and their implementation in 4G/LTE networks is described in detail. The chapter is divided in three parts that are related to the evolution of the Future M2M communication Networks. The first part focuses on existing random access management schemes for M2M communications that are presented in the literature. The second part is devoted on spectrum sharing methods and on M2M clustering and it presents the spatial distribution of heterogeneous networks and its impact on their connectivity. Finally, the last part refers to energy efficiency issues of the future M2M communication systems and their implementation using distributed power control and MAC/scheduling algorithms.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 99
Author(s):  
Pengxu Li ◽  
Gaofeng Cui ◽  
Weidong Wang

This paper considers satellite communication networks where each satellite terminal is equipped with energy harvesting (EH) devices to supply energy continuously, and randomly transmits bursty packets to a geostationary satellite over a shared wireless channel. Packet replicas combined with a successive iteration cancellation scheme can reduce the negative impact of packet collisions but consume more energy. Hence, appropriate energy management policies are required to mitigate the adverse effect of energy outages. Although centralized access schemes can provide better performance on the networks’ throughput, they expend extra signallings to allocate the resources, which leads to non-negligible communication latencies, especially for the satellite communication networks. In order to reduce the communication overhead and delay, a distributed random access (RA) scheme considering the energy constraints is studied. Each EH satellite terminal (EH-ST) decides whether to transmit the packet and how many replicas are transmitted according to its local energy and EH rates to maximize the average long-term network throughput. Owing to the nonconvexity of this problem, we adopted a game theoretic method to approximate the optimal solution. By forcing all the EH-STs to employ the same policy, we characterized and proved the existence and uniqueness of the symmetric Nash equilibrium (NE) of the game. Moreover, an efficient algorithm is proposed to calculate the symmetric NE by combining a policy iteration algorithm and the bisection method. The performance of the proposed RA scheme was investigated via numerous simulations. Simulation results showed that the proposed RA scheme is applicable to the EH devices in the future low-cost interactive satellite communication system.


2021 ◽  
Vol 2 (4) ◽  
pp. 155-159
Author(s):  
Suma V

The conventional infrastructure for mobile-communication is used for providing internet-of-things (IoT) services by the third-generation partnership project (3GPP) with the help of the recently developed cellular internet-of-things (CIoT) scheme. Random-access procedure can be used for connecting the large number of IoT devices using the CIoT systems. This process is advantages as the huge devices are accessed in a concurrent manner. When random access procedures are used simultaneously on a massive number of devices, the probability of congestion is high. This can be controlled to a certain extent through the time division scheme. A power efficient time-division random access model is developed in this paper to offer reliable coverage enhancement (CE) based on the coverage levels (CL). The quality of radio-channel is used for categorization of the CIoT devices after assigning them with CLs. The performance of random-access model can be improved and the instantaneous contention is relaxed greatly by distributing the loads based on their coverage levels into different time periods. Markov chain is used for mathematical analysis of the behavior and state of the devices. The probability of blocking access, success rate and collision control are enhanced by a significant level using this model in comparison to the conventional schemes.


2008 ◽  
Vol 45 (02) ◽  
pp. 297-313 ◽  
Author(s):  
Alexander L. Stolyar

We consider a model of random access (slotted-aloha-type) communication networks of general topology. Assuming that network links receive exogenous arrivals of packets for transmission, we seek dynamic distributed random access strategies whose goal is to keep all network queues stable. We prove that two dynamic strategies, which we collectively call queue length based random access (QRA), ensure stability as long as the rates of exogenous arrival flows are within the network saturation rate region. The first strategy, QRA-I, can be viewed as a random-access-model counterpart of the max-weight scheduling rule, while the second strategy, QRA-II, is a counterpart of the exponential (EXP) rule. The two strategies induce different dynamics of the queues in the fluid scaling limit, which can be exploited for the quality-of-service control in applications.


Sign in / Sign up

Export Citation Format

Share Document