Using Passenger Elicitation for Developing Gesture Design Guidelines for Adjusting Highly Automated Vehicle Dynamics

Author(s):  
Hongnan Lin
2021 ◽  
Author(s):  
Pengcheng Wang ◽  
Zhimin Tao ◽  
Xinkai Wu ◽  
Xiaozheng He ◽  
Bin Zhou

2019 ◽  
Vol 296 ◽  
pp. 01003
Author(s):  
Ilya Kulikov ◽  
Ivan Ulchenko

The article analyses prospects of using a type of robust controllers called relay regulators for automation of vehicle lateral motion. The operation of these regulators in so-called sliding modes is considered along with the “chattering” problem caused by deviations from the “ideal” sliding mode inevitable in actual implementations. For the analysis of vehicle motion, a mathematical model was elaborated, which calculates vehicle dynamics taking into account non-linear tire-road adhesion characteristics. In the conducted study, emphasis was put on low adhesion surfaces, which can be considered as the most difficult case for automatic lateral control of a vehicle. In order to implement automated path tracking within the model, two relay regulators were elaborated differing from one another in the order of dynamics. A comparative study of these regulators was conducted by means of simulations. The regulator that had shown best performance was then tested for robustness by means of modeling, in which maneuvers on snow, ice and a mixed surface were simulated.


Author(s):  
Jay Cho ◽  
Kiseok Sung

Due to the increasing complexity and number of additional features now found in smartphones, it is important for smartphone designers to provide users an efficient way to access these features. This study examines the potential of performing gestures that start at the screen corners (rather than the middle of the edges), by drawing the trajectories and identifying the boundaries of screen edge and screen corner gestures based on the thumb and index finger interactions. Eleven participants were required to perform screen edge and screen corner gestures using their thumb with one hand or index finger while holding the device with their other hand. Kernel density estimations were plotted based on interaction method and gesture. Paired t-tests showed that screen corners will not interfere with the commonly used screen edge gestures and could be a viable region for a new set of gestures. A primary contribution of this study is to present a baseline for screen corner gesture design guidelines.


Author(s):  
Peng Li ◽  
Lei Zuo

Regenerative shock absorbers have potential to recover a large amount of kinetic energy from vehicle vibration otherwise dissipated in traditional oil shock absorbers and at the same time to improve the ride comfort and road handling performances. Linear, rotational and mechanical motion rectifier (MMR) based electromagnetic designs have been proposed. They all have different energy conversion mechanisms, mass inertia effects, and even some nonlinear structures which make the damping behavior more complex; therefore their influence to the whole vehicle dynamics will need to be carefully assessed. This paper will present an integrated equivalent circuit model of the vehicle with electromagnetic regenerative shock absorbers, and then evaluate the vehicle dynamics performance and energy harvesting potential with different design parameters and under variable road conditions. The performance of different mechanisms of electromagnetic regenerative shock absorbers and constant shock absorber will be compared. Design guidelines for rotational electromagnetic regenerative shock absorbers will be developed based on analysis and simulation results.


1970 ◽  
Author(s):  
Rodney C. Wingrove ◽  
Frederick G. Edwards ◽  
Armando E. Lopez
Keyword(s):  

PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document