Improving Student-System Interaction Through Data-driven Explanations of Hierarchical Reinforcement Learning Induced Pedagogical Policies

Author(s):  
Guojing Zhou ◽  
Xi Yang ◽  
Hamoon Azizsoltani ◽  
Tiffany Barnes ◽  
Min Chi
Author(s):  
Guojing Zhou ◽  
Hamoon Azizsoltani ◽  
Markel Sanz Ausin ◽  
Tiffany Barnes ◽  
Min Chi

In interactive e-learning environments such as Intelligent Tutoring Systems, there are pedagogical decisions to make at two main levels of granularity: whole problems and single steps. In recent years, there is growing interest in applying data-driven techniques for adaptive decision making that can dynamically tailor students' learning experiences. Most existing data-driven approaches, however, treat these pedagogical decisions equally, or independently, disregarding the long-term impact that tutor decisions may have across these two levels of granularity. In this paper, we propose and apply an offline Gaussian Processes based Hierarchical Reinforcement Learning (HRL) framework to induce a hierarchical pedagogical policy that makes decisions at both problem and step levels. An empirical classroom study shows that the HRL policy is significantly more effective than a Deep Q-Network (DQN) induced policy and a random yet reasonable baseline policy.


2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Omar Nassef ◽  
Toktam Mahmoodi ◽  
Foivos Michelinakis ◽  
Kashif Mahmood ◽  
Ahmed Elmokashfi

This paper presents a data driven framework for performance optimisation of Narrow-Band IoT user equipment. The proposed framework is an edge micro-service that suggests one-time configurations to user equipment communicating with a base station. Suggested configurations are delivered from a Configuration Advocate, to improve energy consumption, delay, throughput or a combination of those metrics, depending on the user-end device and the application. Reinforcement learning utilising gradient descent and genetic algorithm is adopted synchronously with machine and deep learning algorithms to predict the environmental states and suggest an optimal configuration. The results highlight the adaptability of the Deep Neural Network in the prediction of intermediary environmental states, additionally the results present superior performance of the genetic reinforcement learning algorithm regarding its performance optimisation.


2021 ◽  
Vol 54 (5) ◽  
pp. 1-35
Author(s):  
Shubham Pateria ◽  
Budhitama Subagdja ◽  
Ah-hwee Tan ◽  
Chai Quek

Hierarchical Reinforcement Learning (HRL) enables autonomous decomposition of challenging long-horizon decision-making tasks into simpler subtasks. During the past years, the landscape of HRL research has grown profoundly, resulting in copious approaches. A comprehensive overview of this vast landscape is necessary to study HRL in an organized manner. We provide a survey of the diverse HRL approaches concerning the challenges of learning hierarchical policies, subtask discovery, transfer learning, and multi-agent learning using HRL. The survey is presented according to a novel taxonomy of the approaches. Based on the survey, a set of important open problems is proposed to motivate the future research in HRL. Furthermore, we outline a few suitable task domains for evaluating the HRL approaches and a few interesting examples of the practical applications of HRL in the Supplementary Material.


Sign in / Sign up

Export Citation Format

Share Document