Optimal PID control of an autonomous vehicle using Butterfly Optimization Algorithm BOA

Author(s):  
Lhoussain El Hajjami ◽  
El Mehdi Mellouli ◽  
Mohammed Berrada
Author(s):  
Armin Norouzi ◽  
Milad Masoumi ◽  
Ali Barari ◽  
Saina Farrokhpour Sani

In this paper, a novel Lyapunov-based robust controller by using meta-heuristic optimization algorithm has been proposed for lateral control of an autonomous vehicle. In the first step, double lane change path has been designed using a fifth-degree polynomial (quantic) function and dynamic constraints. A lane changing path planning method has been used to design the double lane change manoeuvre. In the next step, position and orientation errors have been extracted based on the two-degree-of-freedom vehicle bicycle model. A combination of sliding mode and backstepping controllers has been used to control the steering in this paper. Overall stability of the combined controller has been analytically proved by defining a Lyapunov function and based on Lyapunov stability theorem. The proposed controller includes some constant parameters which have effects on controller performance; therefore, particle swarm optimization algorithm has been used for finding optimum values of these parameters. The comparing result of the proposed controller with backstepping controller illustrated the better performance of the proposed controller, especially in the low road frictions. Simulation of designed controllers has been conducted by linking CarSim software with Matlab/Simulink which provides a nonlinear full vehicle model. The simulation was performed for manoeuvres with different durations and road frictions. The proposed controller has outperformed the backstepping controller, especially in low frictions.


2015 ◽  
Vol 6 (5) ◽  
pp. 193
Author(s):  
Haiquan Wang ◽  
Yingyue Hu ◽  
Wudai Liao ◽  
Tongbin Yan

Author(s):  
Hanum Arrosida ◽  
Mohammad Erik Echsony

Nowadays, quadcopter motion control has become a popular research topic because of its versatile ability as an unmanned aircraft can be used to alleviate human labor and also be able to reach dangerous areas or areas which is unreachable to humans. On the other hand, the Optimal PID control method, which incorporates PID and Linear Quadratic Regulator (LQR) control methods, has also been widely used in industry and research field because it has advantages that are easy to operate, easy design, and a good level of precision. In the PID control method, the main problem to be solved is the accuracy of the gain value Kp, Ki, and Kd because the inappropriateness of those value will result in an imprecise control action. Based on these problems and referring to the previous study, the optimal PID control method was developed by using PID controller structure with tuning gain parameter of PID through Linear Quadratic Regulator (LQR) method. Through the integration of these two control methods, the optimum solutions can be obtained: easier controller design process for quadcopter control when crossing the determined trajectories, steady state error values less than 5% and a stable quadcopter movement with roll and pitch angle stabilization at position 0 radians with minimum energy function.


Sign in / Sign up

Export Citation Format

Share Document