Robust Tracking Control for Quadrotor UAV using Sliding Mode Control Algorithm

Author(s):  
Chaohui Du ◽  
Mengyang Li ◽  
Zhumu Fu ◽  
Fazhan Tao
2018 ◽  
Vol 25 (3) ◽  
pp. 26-34 ◽  
Author(s):  
Yong Liu ◽  
Renxiang Bu ◽  
Xiaori Gao

Abstract The paper reports the design and tests of the planar autopilot navigation system in the three-degree-of-freedom (3-DOF) plane (surge, sway and yaw) for a ship. The aim of the tests was to check the improved maneuverability of the ship in open waters using the improved nonlinear control algorithm, developed based on the sliding mode control theory for the ship-trajectory tracking problem of under-actuated ships with static constraints, actuator saturation, and parametric uncertainties. With the integration of the simple increment feedback control law, the dynamic control strategy was developed to fulfill the under-actuated tracking and stabilization objectives. In addition, the LOS (line of sight) guidance system was applied to control the motion path, whereas the sliding mode controller was used to emulate the rudder angle and propeller rotational speed control. Firstly, simulation tests were performed to verify the validity of the basic model and the tracking control algorithm. Subsequently, full scale maneuverability tests were done with a novel container ship, equipped with trajectory tracking control and sliding mode controller algorithm, to check the dynamic stability performance of the ship. The results of the theoretical and numerical simulation on a training ship verify the invariability and excellent robustness of the proposed controller, which: effectively eliminates system chattering, solves the problem of lateral drift of the ship, and maintains the following of the trajectory while simultaneously achieving global stability and robustness.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142098152
Author(s):  
Ayad Q Al-Dujaili ◽  
Alaq Falah ◽  
Amjad J Humaidi ◽  
Daniel A Pereira ◽  
Ibraheem K Ibraheem

This article presents a tracking control design for two-link robot manipulators. To achieve robust tracking control performance, a super-twisting sliding mode control (STSMC) is derived. The stability of the system based on the proposed approach is proved based on the Lyapunov theorem. However, one problem with the designed STSMC is to properly set its parameters during the design. Therefore, it is proposed a social spider optimization (SSO) to tune these design parameters to improve the dynamic performance of the robot manipulator controlled considering STSMC. The performance of the STSMC approach based on SSO is compared to that based on particle swarming optimization (PSO) in terms of dynamic performance and robustness characteristics. The effectiveness of the proposed optimal controllers is verified by simulations within the MATLAB software. It is verified that the performance given by SSO-based STSMC outperforms that resulting from PSO-based STSMC. The experimental results are conducted based on LabVIEW 2019 software to validate the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document