Matrix Profile XXI: A Geometric Approach to Time Series Chains Improves Robustness

Author(s):  
Makoto Imamura ◽  
Takaaki Nakamura ◽  
Eamonn Keogh
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Inga Timofejeva ◽  
Kristina Poskuviene ◽  
Maosen Cao ◽  
Minvydas Ragulskis

A simple and effective algorithm for the identification of optimal time delays based on the geometrical properties of the embedded attractor is presented in this paper. A time series synchronization measure based on optimal time delays is derived. The approach is based on the comparison of optimal time delay sequences that are computed for segments of the considered time series. The proposed technique is validated using coupled chaotic Rössler systems.


2021 ◽  
pp. 45-51
Author(s):  
E. Bakunina ◽  
O. Dykyi

A chaos –geometric approach to investigation of complex chaotic dynamical systems is applied to an  analysis, modeling and processing the time series of emission intensities of chaotic transmitter/receiver systems (two unidirectionally coupled semiconductor laser systems in the all-optical scheme) suited for encoding at rates of GBit/s.  the problem of a signal processing is directly connected with the corresponding cybersecurity in some optical chaos communictaion systems. The  estimated values for the dynamic and  topologic invariants such as the correlation and Kaplan-York dimensions, Lyapunov indicators, Kolmogorov entropy etc  for investigated  chaotic signal time series of two unidirectionally coupled semiconductor laser systems in the all-optical scheme.


1994 ◽  
Vol 144 ◽  
pp. 279-282
Author(s):  
A. Antalová

AbstractThe occurrence of LDE-type flares in the last three cycles has been investigated. The Fourier analysis spectrum was calculated for the time series of the LDE-type flare occurrence during the 20-th, the 21-st and the rising part of the 22-nd cycle. LDE-type flares (Long Duration Events in SXR) are associated with the interplanetary protons (SEP and STIP as well), energized coronal archs and radio type IV emission. Generally, in all the cycles considered, LDE-type flares mainly originated during a 6-year interval of the respective cycle (2 years before and 4 years after the sunspot cycle maximum). The following significant periodicities were found:• in the 20-th cycle: 1.4, 2.1, 2.9, 4.0, 10.7 and 54.2 of month,• in the 21-st cycle: 1.2, 1.6, 2.8, 4.9, 7.8 and 44.5 of month,• in the 22-nd cycle, till March 1992: 1.4, 1.8, 2.4, 7.2, 8.7, 11.8 and 29.1 of month,• in all interval (1969-1992):a)the longer periodicities: 232.1, 121.1 (the dominant at 10.1 of year), 80.7, 61.9 and 25.6 of month,b)the shorter periodicities: 4.7, 5.0, 6.8, 7.9, 9.1, 15.8 and 20.4 of month.Fourier analysis of the LDE-type flare index (FI) yields significant peaks at 2.3 - 2.9 months and 4.2 - 4.9 months. These short periodicities correspond remarkably in the all three last solar cycles. The larger periodicities are different in respective cycles.


Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson

Sign in / Sign up

Export Citation Format

Share Document