Fault Detection System Using Machine Learning on Synthesis Loop Ammonia Plant

Author(s):  
Helmi Qosim ◽  
Zulkarnain
Smart Cities ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 401-419 ◽  
Author(s):  
Maitreyee Dey ◽  
Soumya Prakash Rana ◽  
Sandra Dudley

Due to the increased awareness of issues ranging from green initiatives, sustainability, and occupant well-being, buildings are becoming smarter, but with smart requirements come increasing complexity and monitoring, ultimately carried out by humans. Building heating ventilation and air-conditioning (HVAC) units are one of the major units that consume large percentages of a building’s energy, for example through their involvement in space heating and cooling, the greatest energy consumption in buildings. By monitoring such components effectively, the entire energy demand in buildings can be substantially decreased. Due to the complex nature of building management systems (BMS), many simultaneous anomalous behaviour warnings are not manageable in a timely manner; thus, many energy related problems are left unmanaged, which causes unnecessary energy wastage and deteriorates equipment’s lifespan. This study proposes a machine learning based multi-level automatic fault detection system (MLe-AFD) focusing on remote HVAC fan coil unit (FCU) behaviour analysis. The proposed method employs sequential two-stage clustering to identify the abnormal behaviour of FCU. The model’s performance is validated by implementing well-known statistical measures and further cross-validated via expert building engineering knowledge. The method was experimented on a commercial building based in central London, U.K., as a case study and allows remotely identifying three types of FCU faults appropriately and informing building management staff proactively when they occur; this way, the energy expenditure can be further optimized.


Author(s):  
S. W. Kwon ◽  
I. S. Song ◽  
S. W. Lee ◽  
J. S. Lee ◽  
J. H. Kim ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 343-384 ◽  
Author(s):  
Gamal Eldin I. Selim ◽  
EZZ El-Din Hemdan ◽  
Ahmed M. Shehata ◽  
Nawal A. El-Fishawy

Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


2021 ◽  
Vol 1916 (1) ◽  
pp. 012209
Author(s):  
A Arul ◽  
R S Hari Prakaash ◽  
R Gokul Raja ◽  
V Nandhalal ◽  
N Sathish Kumar

2021 ◽  
pp. 103741
Author(s):  
Dhanke Jyoti Atul ◽  
Dr. R. Kamalraj ◽  
Dr. G. Ramesh ◽  
K. Sakthidasan Sankaran ◽  
Sudhir Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document