UAV Base Station Traffic Offloading for Wireless Service of Tourism Areas

Author(s):  
Lijie Yin ◽  
Ning Zhang ◽  
Chen Tang
Author(s):  
Henry Gao ◽  
Yushi Shen

This chapter presents a novel architecture, namely the border adaptive micro-base-station network, which can sufficiently meet the bandwidth requirements for the future wireless networks. From the three screens convergence point, the goal is to make the wireless service performance match that of the wired systems, instead of downgrading the performance of wired network applications to the wireless level. Based on the analysis of Shannon theory, the only way to build future wireless networks is to adopt this micro-base-station approach instead of progressively improving the traditional large-cell-base-station systems, such as Long-Term Evolution (LTE).


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Nan Zhao ◽  
Pengfei Fan ◽  
Yiqiang Cheng

Traffic offloading is considered to be a promising technology in the Unmanned Aerial Vehicles- (UAVs-) assisted cellular networks. Due to their selfishness property, UAVs may be reluctant to take part in traffic offloading without any incentive. Moreover, considering the dynamic position of UAVs and the dynamic condition of the transmission channel, it is challenging to design a long-term effective incentive mechanism for multi-UAV networks. In this work, the dynamic contract incentive approach is studied to attract UAVs to participate in traffic offloading effectively. The two-stage contract incentive method is introduced under the information symmetric scenario and the information asymmetric scenario. Considering the sufficient conditions and necessary conditions in the contract design, a sequence optimization algorithm is investigated to acquire the maximum expected utility of the base station. The simulation experiment shows that the designed two-stage dynamic contract improves the performance of traffic offloading effectively.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 60940-60950
Author(s):  
Chen Qiu ◽  
Zhiqing Wei ◽  
Zhiyong Feng ◽  
Ping Zhang

Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


2019 ◽  
Vol E102.B (10) ◽  
pp. 2014-2020
Author(s):  
Yancheng CHEN ◽  
Ning LI ◽  
Xijian ZHONG ◽  
Yan GUO

2017 ◽  
Author(s):  
Saba Fadhel Jaf ◽  
Muhamed Fadhel Jaf ◽  
Niyaz Fadhel Jaf

Sign in / Sign up

Export Citation Format

Share Document