A Survey on Hierarchical Cluster Based Secure Routing Protocols and Key Management Schemes in Wireless Sensor Networks

Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.

2016 ◽  
Vol 15 (4) ◽  
pp. 6654-6658
Author(s):  
Irfan Shaqiri ◽  
Aristotel Tentov

In this paper we give an overview of some routing protocols which can improve the efficiency and scalability of wireless sensor networks. The Wireless Sensor Network (WSN) is a network consisting of ten to thousand small nodes with sensing, computing and wireless communication capabilities. WSN are generally used to monitor activities and report events, such as pollution parameters, healthcare issues, fire info etc. in a specific area or environment. It routs data back to the Base Station (BS). Data transmission is usually a multi-hop from node to node towards the BS. This type of networks is limited in power, computational and communication bandwidth. The main goal of all researchers is to find out the energy efficient routing protocol which will improve considerably networks resources in term of prolonging lifetime of sensor nodes. Also we highlight the various routing protocol with advantages and limitations as well. 


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


2021 ◽  
Vol 10 (5) ◽  
pp. 2643-2651
Author(s):  
Noor Alhuda F. Abbas ◽  
Jaber H. Majeed ◽  
Waleed Khalid Al-Azzawi ◽  
Adnan Hussein Ali

There are certain challenges faced with wireless sensor networks (WSNs) performances, consumption can be seen amongst all these challenges as a serious area of research. Data from sensor nodes are transmitted by most WSN energy either among many nodes or to the base station (BS), and due this connection, several routing protocols were developed for supporting in data transmission in the WSNs. Extending network lifetime in an operational environment is the major objective of the wireless sensor network. Charging or exchanging sensor node batteries is almost impossible. Energy balancing and energy efficiency are significant research scopes as per designing of routing protocols aimed at self-organized WSNs. A heterogeneous WSN is one where every node has different amount of energy linked to it before it is deployed in a network. Therefore, different energy efficient routing protocols have been proposed which enables lesser consumption of energy, longer stability period which leads to the network lifetime increasing. In this study, the average energy of a WSN is computed after every logical round of operation for our protocol-HPEEA and compare it with two well-known heterogeneous protocols namely-SEP and CCS. At the end of the considered number of logical operations, MATLAB with simulation results confirm that HPEEA protocol have a reduction in the energy consumption compared to other protocols.


Author(s):  
Mukhtiar Ahmed ◽  
Mazleena Salleh ◽  
M. Ibrahim Channa ◽  
Mohd Foad Rohani

Underwater Wireless Sensor Networks (UWSNs) is interesting area for researchers.To extract the information from seabed to water surface the the majority numbers of routing protocols has been introduced. The design of routing protocols faces many challenges like deployment of sensor nodes, controlling of node mobility, development of efficient route for data forwarding, prolong the battery power of the sensor nodes, and removal of void nodes from active data forwarding paths. This research article focuses the design of the Reliable Multipath Energy Efficient Routing (RMEER) which develops the efficient route between sensor nodes, and prolongs the battery life of the nodes. RMEER is a scalable and robust protocol which utilizes the powerful fixed courier nodes in order to enhance the network throughput, data delivery ratio, network lifetime and reduces the end-to-end delay. RMEER is also an energy efficient routing protocol for saving the energy level of the nodes. We have used the NS2.30 simulator with AquaSim package for performance analysis of RMEER.We observed that the simulation performance of RMEER is better than D-DBR protocol.


Author(s):  
Tanya Pathak ◽  
Vinay Kumar Singh ◽  
Anurag Sharma

In the recent years, an efficient design of a Wireless Sensor Network has become important in the area of research. The major challenges in the design of Wireless Sensor Network is to improve the network lifetime. The main difficulty for sensor node is to survive in that monitoring area for the longer time that means there is a need to increase the lifetime of the sensor nodes by optimizing the energy and distance. There are various existing routing protocols in which optimal routing can be achieved like Data-Centric, Hierarchical and Location-based routing protocols. In this paper, new power efficient routing protocol is being proposed that not only select the shortest path between the source node and sink node for data transmission but also maximizes the lifetime of the participating nodes by selecting the best path for sending the data packet across the network. The main objective of this research is to develop a faster algorithm to find the energy efficient route for Wireless Sensor Network. Simulation results shows that this strategy achieves long network lifetime when compared to the other standard protocols.


Author(s):  
Vikram Dhiman ◽  
◽  
Manoj Kumar ◽  
Ajay K Sharma ◽  
◽  
...  

For many decades, researchers and vendors are continually developing and designing sensors and wireless network devices for countless applications. These low power wireless sensor network devices have designed to gather and propagate data for applications such as environment, industry, habitat, patient monitoring, and many more to excel humankind— however, these devices also inherent many challenges and drawbacks due to the default hardware design. Subsequently, to mitigate limitations and enhance the capability, authors and researchers have investigated and conferred that minor optimization in modeling or routing techniques gradually elevates the performance of WSN. One of the primary concerns which remain on top of the Domain for discussion is energy conservation in WSN devices. Our primary goal is to analyze and design a cluster-based routing protocol for WSN, An efficient way to elevate the network performance. Finally, the emanate results showcase that the performance of the proposed protocol is much more optimized and favorable when combined with soft-computing tactics when compared to the conventional paradigm.


2019 ◽  
Vol 01 (02) ◽  
pp. 87-102 ◽  
Author(s):  
Jennifer S. Raj ◽  
Smys S ◽  
Abul Bashar

The advanced progress in wireless communication pays attention on information of more sensitivity to be delivered to its destined end with numerous of restrains, such as reliableness, constancy, response time and safety. The advancements in digital gadgetry, the usage of unwired transceivers and microcontrollers has made viable the integration of sensing and computing device with transceivers and power units to form a single unit called sensor nodes, the enveloping of sensor nodes form wireless sensor nodes. Innumerable existing proposals have aimed at the energy efficient and secure transmission of data but have achieved any one at the cost of the other. Noting down the issues of the existing method this paper proposes an energy efficient multi-tier sustainable secure routing protocol (EEMSR) for mobile wireless sensor nodes which is a cohabit of multi-tier secure routing with an AL (Ant Lion) optimizer (CoMSR-ALO) along with the prime curve cryptography supported by the routing formed in spherical structure. This better encryption and decryption method takes the edge of power consumption and offers control over the utilization of energy which is difficult to be achieved when dispatching the pack and also avoids the intervention of the encroacher and improves the security and minimizes the deprivation caused due the information lost.


Author(s):  
Sonam Ashok Kamble ◽  
Dilip S. Kale

A wireless sensor network (WSN) consists of hundreds to thousands of sensor nodes, working in any physical environment, and having sensing, computation and communication capabilities. Each sensor node in WSN is capable of communicating with each other and the base station (BS) for the purpose of data integration and dissemination. As the battery replacement is not easy for WSN with thousands of physically embedded nodes, energy conservation becomes one of the most important challenges in WSNs. And hence there is a need for energy efficient routing protocol to offer a long-life work time. In this paper, we propose an Advanced Tree Based Energy Routing Protocol.  In this protocol for each round BS assigns a root node and broadcasts this selection to all sensor nodes. And then each node selects its parent by considering itself and its neighbour’s information, thus making it a dynamic protocol. It is a hierarchical protocol of WSN which increases the lifetime of network by using the energy of the network by using the energy of the network in an efficient way.


2021 ◽  
Vol 297 ◽  
pp. 01075
Author(s):  
Abdelkader Benelhouri ◽  
Hafida Idrissi-Saba ◽  
Jilali Antarir

Sensor battery limitation has always been the most challenging hurdle for wireless sensor networks. Many energy effcient routing protocols have been proposed to overcome this issue in homogeneous networks where sensor nodes start with the same initial energy. When sensor nodes have different amount of initial energy, the network is heterogeneous and it becomes complicated to design an energy effcient routing protocol to save nodes energy and prolong network lifetime. Herein, we propose a three level heterogeneous routing protocol to boost network stability period of wireless sensor networks. The network model splits up into five zones according to nodes initial energies and distance to base station. For data communication, the proposed model relies on two types of communications: Direct and Multi-Hop. The choice of the type of communication is made according to nodes initial energy and their distance to the base station. The clustering scheme is used just in the zones that contains nodes with higher energies. The simulation of our proposed scheme is done using Matlab simulator and the results are compared to the conventional heterogeneous routing protocols 3-level heterogeneous Stable Election Protocol and 3-level Modified Low Energy Adaptive Clustering Hierarchy.


Sign in / Sign up

Export Citation Format

Share Document