scholarly journals Hierarchical Metadata-Aware Document Categorization under Weak Supervision

Author(s):  
Yu Zhang ◽  
Xiusi Chen ◽  
Yu Meng ◽  
Jiawei Han
2015 ◽  
Author(s):  
Judith Gaspers ◽  
Philipp Cimiano ◽  
Britta Wrede

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabri Eyuboglu ◽  
Geoffrey Angus ◽  
Bhavik N. Patel ◽  
Anuj Pareek ◽  
Guido Davidzon ◽  
...  

AbstractComputational decision support systems could provide clinical value in whole-body FDG-PET/CT workflows. However, limited availability of labeled data combined with the large size of PET/CT imaging exams make it challenging to apply existing supervised machine learning systems. Leveraging recent advancements in natural language processing, we describe a weak supervision framework that extracts imperfect, yet highly granular, regional abnormality labels from free-text radiology reports. Our framework automatically labels each region in a custom ontology of anatomical regions, providing a structured profile of the pathologies in each imaging exam. Using these generated labels, we then train an attention-based, multi-task CNN architecture to detect and estimate the location of abnormalities in whole-body scans. We demonstrate empirically that our multi-task representation is critical for strong performance on rare abnormalities with limited training data. The representation also contributes to more accurate mortality prediction from imaging data, suggesting the potential utility of our framework beyond abnormality detection and location estimation.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 11
Author(s):  
Rokshana Stephny Geread ◽  
Abishika Sivanandarajah ◽  
Emily Rita Brouwer ◽  
Geoffrey A. Wood ◽  
Dimitrios Androutsos ◽  
...  

In this work, a novel proliferation index (PI) calculator for Ki67 images called piNET is proposed. It is successfully tested on four datasets, from three scanners comprised of patches, tissue microarrays (TMAs) and whole slide images (WSI), representing a diverse multi-centre dataset for evaluating Ki67 quantification. Compared to state-of-the-art methods, piNET consistently performs the best over all datasets with an average PI difference of 5.603%, PI accuracy rate of 86% and correlation coefficient R = 0.927. The success of the system can be attributed to several innovations. Firstly, this tool is built based on deep learning, which can adapt to wide variability of medical images—and it was posed as a detection problem to mimic pathologists’ workflow which improves accuracy and efficiency. Secondly, the system is trained purely on tumor cells, which reduces false positives from non-tumor cells without needing the usual pre-requisite tumor segmentation step for Ki67 quantification. Thirdly, the concept of learning background regions through weak supervision is introduced, by providing the system with ideal and non-ideal (artifact) patches that further reduces false positives. Lastly, a novel hotspot analysis is proposed to allow automated methods to score patches from WSI that contain “significant” activity.


Author(s):  
Siva Reddy ◽  
Mirella Lapata ◽  
Mark Steedman

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the Free917 and WebQuestions benchmark datasets show our semantic parser improves over the state of the art.


2020 ◽  
Vol 125 (13) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document