Semantic parsing of speech using grammars learned with weak supervision

Author(s):  
Judith Gaspers ◽  
Philipp Cimiano ◽  
Britta Wrede
Author(s):  
Siva Reddy ◽  
Mirella Lapata ◽  
Mark Steedman

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the Free917 and WebQuestions benchmark datasets show our semantic parser improves over the state of the art.


2019 ◽  
Author(s):  
Priyanka Agrawal ◽  
Ayushi Dalmia ◽  
Parag Jain ◽  
Abhishek Bansal ◽  
Ashish Mittal ◽  
...  

Author(s):  
Tao Shen ◽  
Xiubo Geng ◽  
Guodong Long ◽  
Jing Jiang ◽  
Chengqi Zhang ◽  
...  

Many algorithms for Knowledge-Based Question Answering (KBQA) depend on semantic parsing, which translates a question to its logical form. When only weak supervision is provided, it is usually necessary to search valid logical forms for model training. However, a complex question typically involves a huge search space, which creates two main problems: 1) the solutions limited by computation time and memory usually reduce the success rate of the search, and 2) spurious logical forms in the search results degrade the quality of training data. These two problems lead to a poorly-trained semantic parsing model. In this work, we propose an effective search method for weakly supervised KBQA based on operator prediction for questions. With search space constrained by predicted operators, sufficient search paths can be explored, more valid logical forms can be derived, and operators possibly causing spurious logical forms can be avoided. As a result, a larger proportion of questions in a weakly supervised training set are equipped with logical forms, and fewer spurious logical forms are generated. Such high-quality training data directly contributes to a better semantic parsing model. Experimental results on one of the largest KBQA datasets (i.e., CSQA) verify the effectiveness of our approach and deliver a new state-of-the-art performance.


2020 ◽  
Vol 34 (05) ◽  
pp. 8536-8543
Author(s):  
Ansong Ni ◽  
Pengcheng Yin ◽  
Graham Neubig

A semantic parser maps natural language commands (NLs) from the users to executable meaning representations (MRs), which are later executed in certain environment to obtain user-desired results. The fully-supervised training of such parser requires NL/MR pairs, annotated by domain experts, which makes them expensive to collect. However, weakly-supervised semantic parsers are learnt only from pairs of NL and expected execution results, leaving the MRs latent. While weak supervision is cheaper to acquire, learning from this input poses difficulties. It demands that parsers search a large space with a very weak learning signal and it is hard to avoid spurious MRs that achieve the correct answer in the wrong way. These factors lead to a performance gap between parsers trained in weakly- and fully-supervised setting. To bridge this gap, we examine the intersection between weak supervision and active learning, which allows the learner to actively select examples and query for manual annotations as extra supervision to improve the model trained under weak supervision. We study different active learning heuristics for selecting examples to query, and various forms of extra supervision for such queries. We evaluate the effectiveness of our method on two different datasets. Experiments on the WikiSQL show that by annotating only 1.8% of examples, we improve over a state-of-the-art weakly-supervised baseline by 6.4%, achieving an accuracy of 79.0%, which is only 1.3% away from the model trained with full supervision. Experiments on WikiTableQuestions with human annotators show that our method can improve the performance with only 100 active queries, especially for weakly-supervised parsers learnt from a cold start. 1


2019 ◽  
Vol 7 ◽  
pp. 233-248
Author(s):  
Laura Jehl ◽  
Carolin Lawrence ◽  
Stefan Riezler

In many machine learning scenarios, supervision by gold labels is not available and conse quently neural models cannot be trained directly by maximum likelihood estimation. In a weak supervision scenario, metric-augmented objectives can be employed to assign feedback to model outputs, which can be used to extract a supervision signal for training. We present several objectives for two separate weakly supervised tasks, machine translation and semantic parsing. We show that objectives should actively discourage negative outputs in addition to promoting a surrogate gold structure. This notion of bipolarity is naturally present in ramp loss objectives, which we adapt to neural models. We show that bipolar ramp loss objectives outperform other non-bipolar ramp loss objectives and minimum risk training on both weakly supervised tasks, as well as on a supervised machine translation task. Additionally, we introduce a novel token-level ramp loss objective, which is able to outperform even the best sequence-level ramp loss on both weakly supervised tasks.


Author(s):  
Yoav Artzi ◽  
Luke Zettlemoyer

The context in which language is used provides a strong signal for learning to recover its meaning. In this paper, we show it can be used within a grounded CCG semantic parsing approach that learns a joint model of meaning and context for interpreting and executing natural language instructions, using various types of weak supervision. The joint nature provides crucial benefits by allowing situated cues, such as the set of visible objects, to directly influence learning. It also enables algorithms that learn while executing instructions, for example by trying to replicate human actions. Experiments on a benchmark navigational dataset demonstrate strong performance under differing forms of supervision, including correctly executing 60% more instruction sets relative to the previous state of the art.


2014 ◽  
Author(s):  
Yoav Artzi ◽  
Dipanjan Das ◽  
Slav Petrov
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabri Eyuboglu ◽  
Geoffrey Angus ◽  
Bhavik N. Patel ◽  
Anuj Pareek ◽  
Guido Davidzon ◽  
...  

AbstractComputational decision support systems could provide clinical value in whole-body FDG-PET/CT workflows. However, limited availability of labeled data combined with the large size of PET/CT imaging exams make it challenging to apply existing supervised machine learning systems. Leveraging recent advancements in natural language processing, we describe a weak supervision framework that extracts imperfect, yet highly granular, regional abnormality labels from free-text radiology reports. Our framework automatically labels each region in a custom ontology of anatomical regions, providing a structured profile of the pathologies in each imaging exam. Using these generated labels, we then train an attention-based, multi-task CNN architecture to detect and estimate the location of abnormalities in whole-body scans. We demonstrate empirically that our multi-task representation is critical for strong performance on rare abnormalities with limited training data. The representation also contributes to more accurate mortality prediction from imaging data, suggesting the potential utility of our framework beyond abnormality detection and location estimation.


Sign in / Sign up

Export Citation Format

Share Document