scholarly journals Saccades, attentional orienting and disengagement: the effects of anodal tDCS over right posterior parietal cortex (PPC) and frontal eye field (FEF)

Author(s):  
Lorenzo Diana ◽  
Patrick Pilastro ◽  
Edoardo N. Aiello ◽  
Aleksandra K. Eberhard-Moscicka ◽  
René M. Müri ◽  
...  
2021 ◽  
Author(s):  
Lorenzo Diana ◽  
Patrick Pilastro ◽  
Edoardo N. Aiello ◽  
Aleksandra K. Eberhard-Moscicka ◽  
René M. Müri ◽  
...  

ABSTRACTIn the present work, we applied anodal transcranial direct current stimulation (tDCS) over the posterior parietal cortex (PPC) and frontal eye field (FEF) of the right hemisphere in healthy subjects to modulate attentional orienting and disengagement in a gap-overlap task. Both stimulations led to bilateral improvements in saccadic reaction times (SRTs), with larger effects for gap trials. However, analyses showed that the gap effect was not affected by tDCS. Importantly, we observed significant effects of baseline performance that may mediate side- and task-specific effects of brain stimulation.


1999 ◽  
Vol 22 (4) ◽  
pp. 682-682 ◽  
Author(s):  
Jay A. Edelman ◽  
Jacqueline Gottlieb ◽  
Michael E. Goldberg

The posterior parietal cortex and frontal eye field contain maps of visual salience on which the decision to choose a saccade may be based. However, an averaging express saccade is not represented by a victorious unimodal representation in the superior colliculus. Normalization as described by Findlay & Walker is not necessary for the generation of saccades.


Author(s):  
Takehiro Minamoto ◽  
Miyuki Azuma ◽  
Ken Yaoi ◽  
Aoi Ashizuka ◽  
Tastuya Mima ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarina Vulić ◽  
Jovana Bjekić ◽  
Dunja Paunović ◽  
Miloš Jovanović ◽  
Slađan Milanović ◽  
...  

AbstractAssociative memory (AM) reflects the ability to remember and retrieve multiple pieces of information bound together thus enabling complex episodic experiences. Despite growing interest in the use of transcranial direct current stimulation (tDCS) for the modulation of AM, there are inconsistent evidence regarding its benefits. An alternative to standard constant tDCS could be the application of frequency-modulated tDCS protocols, that mimic natural function-relevant brain rhythms. Here, we show the effects of anodal tDCS oscillating in theta rhythm (5 Hz; 1.5 ± 0.1 mA) versus constant anodal tDCS and sham over left posterior parietal cortex on cued recall of face-word associations. In a crossover design, each participant completed AM assessment immediately following 20-min theta-oscillatory, constant, and sham tDCS, as well as 1 and 5 days after. Theta oscillatory tDCS increased initial AM performance in comparison to sham, and so did constant tDCS. On the group level, no differences between oscillatory and constant tDCS were observed, but individual-level analysis revealed that some participants responded to theta-oscillatory but not to constant tDCS, and vice versa, which could be attributed to their different physiological modes of action. This study shows the potential of oscillatory tDCS protocols for memory enhancement to produce strong and reliable memory-modulating effects which deserve to be investigated further.


Author(s):  
R. John Leigh ◽  
David S. Zee

This chapter reviews the behavioral properties of rapid eye movements, ranging from quick phases of nystagmus to cognitively controlled saccades, and their neural substrate. Properties of various types of saccades are described, including express saccades, memory-guided saccades, antisaccades, and saccades during visual search and reading. Current concepts of regions important for the generation of saccades are reviewed, integrating results of functional imaging and electrophysiology, including brainstem burst neurons and omnipause neurons, the superior colliculus, frontal eye field, supplementary eye field, dorsolateral prefrontal cortex, cingulate cortex, posterior parietal cortex, parietal eye field, thalamus, pulvinar, caudate, substantia nigra pars reticulata, subthalamic nucleus, cerebellar dorsal vermis, and fastigial nucleus. Saccade adaptation to novel visual demands is discussed, and the interaction between saccades and eyelid movements (blinks). Mathematical models of saccades are discussed. Clinical and laboratory evaluation of saccades and the pathophysiology of saccadic disorders, from slow saccades to opsoclonus, are reviewed.


2021 ◽  
Author(s):  
Vasilis M Karlaftis ◽  
Polytimi Frangou ◽  
Cameron Higgins ◽  
Diego Vidaurre ◽  
Joseph J Ziminski ◽  
...  

AbstractInterpreting cluttered scenes —a key skill for successfully interacting with our environment— relies on our ability to select relevant sensory signals while filtering out noise. Training is known to improve our ability to make these perceptual judgements by altering local processing in sensory brain areas. Yet, the brain-wide network mechanisms that mediate our ability for perceptual learning remain largely unknown. Here, we combine transcranial direct current stimulation (tDCS) with multi-modal brain measures to modulate cortical excitability during training on a signal-in-noise task (i.e. detection of visual patterns in noise) and test directly the link between processing in visual cortex and its interactions with decision-related areas (i.e. posterior parietal cortex). We test whether brain stimulation alters inhibitory processing in visual cortex, as measured by magnetic resonance spectroscopy (MRS) of GABA and functional connectivity between visual and posterior parietal cortex, as measured by resting state functional magnetic resonance imaging (rs-fMRI). We show that anodal tDCS during training results in faster learning and decreased GABA+ during training, before these changes occur for training without stimulation (i.e. sham). Further, anodal tDCS decreases occipito-parietal interactions and time-varying connectivity across the visual cortex. Our findings demonstrate that tDCS boosts learning by accelerating visual GABAergic plasticity and altering interactions between visual and decision-related areas, suggesting that training optimises gain control mechanisms (i.e. GABAergic inhibition) and functional inter-areal interactions to support perceptual learning.


2009 ◽  
Author(s):  
Philip Tseng ◽  
Cassidy Sterling ◽  
Adam Cooper ◽  
Bruce Bridgeman ◽  
Neil G. Muggleton ◽  
...  

2018 ◽  
Author(s):  
Imogen M Kruse

The near-miss effect in gambling behaviour occurs when an outcome which is close to a win outcome invigorates gambling behaviour notwithstanding lack of associated reward. In this paper I postulate that the processing of concepts which are deemed controllable is rooted in neurological machinery located in the posterior parietal cortex specialised for the processing of objects which are immediately actionable or controllable because they are within reach. I theorise that the use of a common machinery facilitates spatial influence on the perception of concepts such that the win outcome which is 'almost complete' is perceived as being 'almost within reach'. The perceived realisability of the win increases subjective reward probability and the associated expected action value which impacts decision-making and behaviour. This novel hypothesis is the first to offer a neurological model which can comprehensively explain many empirical findings associated with the near-miss effect as well as other gambling phenomena such as the ‘illusion of control’. Furthermore, when extended to other compulsive behaviours such as drug addiction, the model can offer an explanation for continued drug-seeking following devaluation and for the increase in cravings in response to perceived opportunity to self-administer, neither of which can be explained by simple reinforcement models alone. This paper therefore provides an innovative and unifying perspective for the study and treatment of behavioural and substance addictions.


Sign in / Sign up

Export Citation Format

Share Document