The Saccadic System

Author(s):  
R. John Leigh ◽  
David S. Zee

This chapter reviews the behavioral properties of rapid eye movements, ranging from quick phases of nystagmus to cognitively controlled saccades, and their neural substrate. Properties of various types of saccades are described, including express saccades, memory-guided saccades, antisaccades, and saccades during visual search and reading. Current concepts of regions important for the generation of saccades are reviewed, integrating results of functional imaging and electrophysiology, including brainstem burst neurons and omnipause neurons, the superior colliculus, frontal eye field, supplementary eye field, dorsolateral prefrontal cortex, cingulate cortex, posterior parietal cortex, parietal eye field, thalamus, pulvinar, caudate, substantia nigra pars reticulata, subthalamic nucleus, cerebellar dorsal vermis, and fastigial nucleus. Saccade adaptation to novel visual demands is discussed, and the interaction between saccades and eyelid movements (blinks). Mathematical models of saccades are discussed. Clinical and laboratory evaluation of saccades and the pathophysiology of saccadic disorders, from slow saccades to opsoclonus, are reviewed.

2021 ◽  
Author(s):  
Lorenzo Diana ◽  
Patrick Pilastro ◽  
Edoardo N. Aiello ◽  
Aleksandra K. Eberhard-Moscicka ◽  
René M. Müri ◽  
...  

ABSTRACTIn the present work, we applied anodal transcranial direct current stimulation (tDCS) over the posterior parietal cortex (PPC) and frontal eye field (FEF) of the right hemisphere in healthy subjects to modulate attentional orienting and disengagement in a gap-overlap task. Both stimulations led to bilateral improvements in saccadic reaction times (SRTs), with larger effects for gap trials. However, analyses showed that the gap effect was not affected by tDCS. Importantly, we observed significant effects of baseline performance that may mediate side- and task-specific effects of brain stimulation.


1999 ◽  
Vol 82 (1) ◽  
pp. 463-471 ◽  
Author(s):  
Laurent Petit ◽  
James V. Haxby

We have investigated the functional anatomy of pursuit eye movements in humans with functional magnetic imaging. The performance of pursuit eye movements induced activations in the cortical eye fields also activated during the execution of visually guided saccadic eye movements, namely in the precentral cortex [frontal eye field (FEF)], the medial superior frontal cortex (supplementary eye field), the intraparietal cortex (parietal eye field), and the precuneus, and at the junction of occipital and temporal cortex (MT/MST) cortex. Pursuit-related areas could be distinguished from saccade-related areas both in terms of spatial extent and location. Pursuit-related areas were smaller than their saccade-related counterparts, three of eight significantly so. The pursuit-related FEF was usually inferior to saccade-related FEF. Other pursuit-related areas were consistently posterior to their saccade-related counterparts. The current findings provide the first functional imaging evidence for a distinction between two parallel cortical systems that subserve pursuit and saccadic eye movements in humans.


1999 ◽  
Vol 22 (4) ◽  
pp. 682-682 ◽  
Author(s):  
Jay A. Edelman ◽  
Jacqueline Gottlieb ◽  
Michael E. Goldberg

The posterior parietal cortex and frontal eye field contain maps of visual salience on which the decision to choose a saccade may be based. However, an averaging express saccade is not represented by a victorious unimodal representation in the superior colliculus. Normalization as described by Findlay & Walker is not necessary for the generation of saccades.


2012 ◽  
Vol 25 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Martijn G. van Koningsbruggen ◽  
Marius V. Peelen ◽  
Eilir Davies ◽  
Robert D. Rafal

The current paper describes a rare case of a patient who suffered from unilateral apraxia of eye closure as a result of a bilateral stroke. Interestingly, the patient’s ability to voluntarily close both eyelids (i.e. blinking) was not affected, indicating that different neural mechanisms control each type of eye closure. The stroke caused damage to a large part of the right frontal cortex, including the motor cortex, pre-motor cortex and the frontal eye field (FEF). The lesion in the left hemisphere was restricted to the FEF. In order to further study the neural mechanisms of eye closure, we conducted an fMRI study in a group of neurological healthy subjects. We found that all areas of the oculomotor cortex were activated by both left and right winking, including the FEF, supplementary eye field (SEF), and posterior parietal cortex (PPC). Blinking activated FEF and SEF, but not PPC. Both FEF and PPC were significantly more active during winking than blinking. Together, these results provide evidence for a critical role of the FEF in voluntary unilateral eye closure.


1996 ◽  
Vol 75 (5) ◽  
pp. 2187-2191 ◽  
Author(s):  
H. Mushiake ◽  
N. Fujii ◽  
J. Tanji

1. We studied neuronal activity in the supplementary eye field (SEF) and frontal eye field (FEF) of a monkey during performance of a conditional motor task that required capturing of a target either with a saccadic eye movement (the saccade-only condition) or with an eye-hand reach (the saccade-and-reach condition), according to visual instructions. 2. Among 106 SEF neurons that showed presaccadic activity, more than one-half of them (54%) were active preferentially under the saccade-only condition (n = 12) or under the saccade-and-reach condition (n = 45), while the remaining 49 neurons were equally active in both conditions. 3. By contrast, most (97%) of the 109 neurons in the FEF exhibited approximately equal activity in relation to saccades under the two conditions. 4. The present results suggest the possibility that SEF neurons, at least in part, are involved in signaling whether the motor task is oculomotor or combined eye-arm movements, whereas FEF neurons are mostly related to oculomotor control.


1987 ◽  
Vol 57 (1) ◽  
pp. 179-200 ◽  
Author(s):  
J. Schlag ◽  
M. Schlag-Rey

Electrical microstimulation and unit recording were performed in dorsomedial frontal cortex of four alert monkeys to identify an oculomotor area whose existence had been postulated rostral to the supplementary motor area. Contraversive saccades were evoked from 129 sites by stimulation. Threshold currents were lower than 20 microA in half the tests. Response latencies were usually longer than 50 ms (minimum: 30 ms). Eye movements were occasionally accompanied by blinks, ear, or neck movements. The cortical area yielding these movements was at the superior edge of the frontal lobe just rostral to the region from which limb movements could be elicited. Depending on the site of stimulation, saccades varied between two extremes: from having rather uniform direction and size, to converging toward a goal defined in space. The transition between these extremes was gradual with no evidence that these two types were fundamentally different. From surface to depth of cortex, direction and amplitude of evoked saccades were similar or changed progressively. No clear systematization was found depending on location along rostrocaudal or mediolateral axes of the cortex. The dorsomedial oculomotor area mapped was approximately 7 mm long and 6 mm wide. Combined eye and head movements were elicited from one of ten sites stimulated when the head was unrestrained. In the other nine cases, saccades were not accompanied by head rotation, even when higher currents or longer stimulus trains were applied. Presaccadic unit activity was recorded from 62 cells. Each of these cells had a preferred direction that corresponded to the direction of the movement evoked by local microstimulation. Presaccadic activity occurred with self-initiated as well as visually triggered saccades. It often led self-initiated saccades by more than 300 ms. Recordings made with the head free showed that the firing could not be interpreted as due to attempted head movements. Many dorsomedial cortical neurons responded to photic stimuli, either phasically or tonically. Sustained responses (activation or inhibition) were observed during target fixation. Twenty-one presaccadic units showed tonic changes of activity with fixation. Justification is given for considering the cortical area studied as a supplementary eye field. It shares many common properties with the arcuate frontal eye field. Differences noted in this study include: longer latency of response to electrical stimulation, possibility to evoke saccades converging apparently toward a goal, and long-lead unit activity with spontaneous saccades.


2011 ◽  
Vol 105 (5) ◽  
pp. 2547-2559 ◽  
Author(s):  
Tamara K. Berdyyeva ◽  
Carl R. Olson

Neurons in several areas of the monkey frontal cortex exhibit rank selectivity, firing differentially as a function of the stage attained during the performance of a serial order task. The activity of these neurons is commonly thought to represent ordinal position within the trial. However, they might also be sensitive to factors correlated with ordinal position including time elapsed during the trial (which is greater for each successive stage) and the degree of anticipation of reward (which probably increases at each successive stage). To compare the influences of these factors, we monitored neuronal activity in the supplementary motor area (SMA), presupplementary motor area (pre-SMA), supplementary eye field (SEF), and dorsolateral prefrontal cortex during the performance of a serial order task (requiring a series of saccades in three specified directions), a variable reward task (in which a cue displayed early in the trial indicated whether the reward received at the end of the trial would be large or small), and a long delay task (in which the monkey had simply to maintain fixation during a period of time approximating the duration of an average trial in the serial order task). We found that rank signals were partially correlated with sensitivity to elapsed time and anticipated reward. The connection to elapsed time was strongest in the pre-SMA. The connection to anticipated reward was most pronounced in the SMA and SEF. However, critically, these factors could not fully explain rank selectivity in any of the areas tested.


2010 ◽  
Vol 103 (2) ◽  
pp. 801-816 ◽  
Author(s):  
Veit Stuphorn ◽  
Joshua W. Brown ◽  
Jeffrey D. Schall

The goal of this study was to determine whether the activity of neurons in the supplementary eye field (SEF) is sufficient to control saccade initiation in macaque monkeys performing a saccade countermanding (stop signal) task. As previously observed, many neurons in the SEF increase the discharge rate before saccade initiation. However, when saccades are canceled in response to a stop signal, effectively no neurons with presaccadic activity display discharge rate modulation early enough to contribute to saccade cancellation. Moreover, SEF neurons do not exhibit a specific threshold discharge rate that could trigger saccade initiation. Yet, we observed more subtle relations between SEF activation and saccade production. The activity of numerous SEF neurons was correlated with response time and varied with sequential adjustments in response latency. Trials in which monkeys canceled or produced a saccade in a stop signal trial were distinguished by a modest difference in discharge rate of these SEF neurons before stop signal or target presentation. These findings indicate that neurons in the SEF, in contrast to counterparts in the frontal eye field and superior colliculus, do not contribute directly and immediately to the initiation of visually guided saccades. However the SEF may proactively regulate saccade production by biasing the balance between gaze-holding and gaze-shifting based on prior performance and anticipated task requirements.


Sign in / Sign up

Export Citation Format

Share Document