scholarly journals Discrete Fréchet Distance under Translation

2021 ◽  
Vol 17 (3) ◽  
pp. 1-42
Author(s):  
Karl Bringmann ◽  
Marvin KüNnemann ◽  
André Nusser

The discrete Fréchet distance is a popular measure for comparing polygonal curves. An important variant is the discrete Fréchet distance under translation, which enables detection of similar movement patterns in different spatial domains. For polygonal curves of length n in the plane, the fastest known algorithm runs in time Õ( n 5 ) [12]. This is achieved by constructing an arrangement of disks of size Õ( n 4 ), and then traversing its faces while updating reachability in a directed grid graph of size N := Õ( n 5 ), which can be done in time Õ(√ N ) per update [27]. The contribution of this article is two-fold. First, although it is an open problem to solve dynamic reachability in directed grid graphs faster than Õ(√ N ), we improve this part of the algorithm: We observe that an offline variant of dynamic s - t -reachability in directed grid graphs suffices, and we solve this variant in amortized time Õ( N 1/3 ) per update, resulting in an improved running time of Õ( N 4.66 ) for the discrete Fréchet distance under translation. Second, we provide evidence that constructing the arrangement of size Õ( N 4 ) is necessary in the worst case by proving a conditional lower bound of n 4 - o(1) on the running time for the discrete Fréchet distance under translation, assuming the Strong Exponential Time Hypothesis.

2012 ◽  
Vol 22 (01) ◽  
pp. 27-44 ◽  
Author(s):  
HEE-KAP AHN ◽  
CHRISTIAN KNAUER ◽  
MARC SCHERFENBERG ◽  
LENA SCHLIPF ◽  
ANTOINE VIGNERON

We consider the problem of computing the discrete Fréchet distance between two polygonal curves when their vertices are imprecise. An imprecise point is given by a region and this point could lie anywhere within this region. By modelling imprecise points as balls in dimension d, we present an algorithm for this problem that returns in time 2O(d2) m2n2 log 2(mn) the minimum Fréchet distance between two imprecise polygonal curves with n and m vertices, respectively. We give an improved algorithm for the planar case with running time O(mn log 3(mn) + (m2+n2) log (mn)). In the d-dimensional orthogonal case, where points are modelled as axis-parallel boxes, and we use the L∞ distance, we give an O(dmn log (dmn))-time algorithm. We also give efficient O(dmn)-time algorithms to approximate the maximum Fréchet distance, as well as the minimum and maximum Fréchet distance under translation. These algorithms achieve constant factor approximation ratios in "realistic" settings (such as when the radii of the balls modelling the imprecise points are roughly of the same size).


2019 ◽  
Vol 29 (02) ◽  
pp. 161-187
Author(s):  
Joachim Gudmundsson ◽  
Majid Mirzanezhad ◽  
Ali Mohades ◽  
Carola Wenk

Computing the Fréchet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fréchet distance computations become easier. Let [Formula: see text] and [Formula: see text] be two polygonal curves in [Formula: see text] with [Formula: see text] and [Formula: see text] vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fréchet distance between them: (1) a linear-time algorithm for deciding the Fréchet distance between two curves, (2) an algorithm that computes the Fréchet distance in [Formula: see text] time, (3) a linear-time [Formula: see text]-approximation algorithm, and (4) a data structure that supports [Formula: see text]-time decision queries, where [Formula: see text] is the number of vertices of the query curve and [Formula: see text] the number of vertices of the preprocessed curve.


2016 ◽  
Vol 26 (01) ◽  
pp. 53-66 ◽  
Author(s):  
M. I. Schlesinger ◽  
E. V. Vodolazskiy ◽  
V. M. Yakovenko

The article analyzes similarity of closed polygonal curves with respect to the Fréchet metric, which is stronger than the well-known Hausdorff metric and therefore is more appropriate in some applications. An algorithm is described that determines whether the Fréchet distance between two closed polygonal curves with [Formula: see text] and [Formula: see text] vertices is less than a given number [Formula: see text]. The algorithm takes [Formula: see text] time whereas the previously known algorithms take [Formula: see text] time.


Author(s):  
Evgeny Dantsin ◽  
Edward A. Hirsch

The chapter is a survey of ideas and techniques behind satisfiability algorithms with the currently best asymptotic upper bounds on the worst-case running time. The survey also includes related structural-complexity topics such as Schaefer’s dichotomy theorem, reductions between various restricted cases of SAT, the exponential time hypothesis, etc.


2017 ◽  
Vol 27 (01n02) ◽  
pp. 85-119 ◽  
Author(s):  
Karl Bringmann ◽  
Marvin Künnemann

The Fréchet distance is a well studied and very popular measure of similarity of two curves. The best known algorithms have quadratic time complexity, which has recently been shown to be optimal assuming the Strong Exponential Time Hypothesis (SETH) [Bringmann, FOCS'14]. To overcome the worst-case quadratic time barrier, restricted classes of curves have been studied that attempt to capture realistic input curves. The most popular such class are [Formula: see text]-packed curves, for which the Fréchet distance has a [Formula: see text]-approximation in time [Formula: see text] [Driemel et al., DCG'12]. In dimension [Formula: see text] this cannot be improved to [Formula: see text] for any [Formula: see text] unless SETH fails [Bringmann, FOCS'14]. In this paper, exploiting properties that prevent stronger lower bounds, we present an improved algorithm with time complexity [Formula: see text]. This improves upon the algorithm by Driemel et al. for any [Formula: see text]. Moreover, our algorithm's dependence on [Formula: see text], [Formula: see text] and [Formula: see text] is optimal in high dimensions apart from lower order factors, unless SETH fails. Our main new ingredients are as follows: For filling the classical free-space diagram we project short subcurves onto a line, which yields one-dimensional separated curves with roughly the same pairwise distances between vertices. Then we tackle this special case in near-linear time by carefully extending a greedy algorithm for the Fréchet distance of one-dimensional separated curves.


1995 ◽  
Vol 05 (01n02) ◽  
pp. 75-91 ◽  
Author(s):  
HELMUT ALT ◽  
MICHAEL GODAU

As a measure for the resemblance of curves in arbitrary dimensions we consider the so-called Fréchet-distance, which is compatible with parametrizations of the curves. For polygonal chains P and Q consisting of p and q edges an algorithm of runtime O(pq log(pq)) measuring the Fréchet-distance between P and Q is developed. Then some important variants are considered, namely the Fréchet-distance for closed curves, the nonmonotone Fréchet-distance and a distance function derived from the Fréchet-distance measuring whether P resembles some part of the curve Q.


1990 ◽  
Vol 19 (335) ◽  
Author(s):  
Peter Bro Miltersen

We analyze the concept of <em> malignness</em>, which is the property of probability ensembles of making the average case running time equal to the worst case running time for a class of algorithms. We derive lower and upper bounds on the complexity of malign ensembles, which are tight for exponential time algorithms, and which show that no polynomial time computable malign ensemble exists for the class of superlinear algorithms. Furthermore, we show that for no class of superlinear algorithms a polynomial time computable malign ensemble exists, unless every language in P has an expected polynomial time constructor.


Sign in / Sign up

Export Citation Format

Share Document