scholarly journals Lower Bounds for Maximal Matchings and Maximal Independent Sets

2021 ◽  
Vol 68 (5) ◽  
pp. 1-30
Author(s):  
Alkida Balliu ◽  
Sebastian Brandt ◽  
Juho Hirvonen ◽  
Dennis Olivetti ◽  
Mikaël Rabie ◽  
...  

There are distributed graph algorithms for finding maximal matchings and maximal independent sets in O ( Δ + log * n ) communication rounds; here, n is the number of nodes and Δ is the maximum degree. The lower bound by Linial (1987, 1992) shows that the dependency on n is optimal: These problems cannot be solved in o (log * n ) rounds even if Δ = 2. However, the dependency on Δ is a long-standing open question, and there is currently an exponential gap between the upper and lower bounds. We prove that the upper bounds are tight. We show that any algorithm that finds a maximal matching or maximal independent set with probability at least 1-1/ n requires Ω (min { Δ , log log n / log log log n }) rounds in the LOCAL model of distributed computing. As a corollary, it follows that any deterministic algorithm that finds a maximal matching or maximal independent set requires Ω (min { Δ , log n / log log n }) rounds; this is an improvement over prior lower bounds also as a function of  n .

10.37236/8530 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Jeff Kahn ◽  
Jinyoung Park

Answering questions of Y. Rabinovich, we prove "stability" versions of upper bounds on maximal independent set counts in graphs under various restrictions. Roughly these say that being close to the maximum implies existence of a large induced matching or triangle matching (depending on assumptions). A mild strengthening of one of these results is a key ingredient in a proof (to appear elsewhere) of a conjecture of L. Ilinca and the first author giving asymptotics for the number of maximal independent sets in the graph of the Hamming cube.


2000 ◽  
Vol 10 (04) ◽  
pp. 253-266 ◽  
Author(s):  
E. BOROS ◽  
V. GURVICH ◽  
K. ELBASSIONI ◽  
L. KHACHIYAN

We show that for hypergraphs of bounded edge size, the problem of extending a given list of maximal independent sets is NC-reducible to the computation of an arbitrary maximal independent set for an induced sub-hypergraph. The latter problem is known to be in RNC. In particular, our reduction yields an incremental RNC dualization algorithm for hypergraphs of bounded edge size, a problem previously known to be solvable in polynomial incremental time. We also give a similar parallel algorithm for the dualization problem on the product of arbitrary lattices which have a bounded number of immediate predecessors for each element.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050002 ◽  
Author(s):  
Sayinath Udupa ◽  
R. S. Bhat

Let [Formula: see text] be a graph. A vertex [Formula: see text] strongly (weakly) b-dominates block [Formula: see text] if [Formula: see text] ([Formula: see text]) for every vertex [Formula: see text] in the block [Formula: see text]. A set [Formula: see text] is said to be strong (weak) vb-dominating set (SVBD-set) (WVBD-set) if every block in [Formula: see text] is strongly (weakly) b-dominated by some vertex in [Formula: see text]. The strong (weak) vb-domination number [Formula: see text] ([Formula: see text]) is the order of a minimum SVBD (WVBD) set of [Formula: see text]. A set [Formula: see text] is said to be strong (weak) vertex block independent set (SVBI-set (WVBI-set)) if [Formula: see text] is a vertex block independent set and for every vertex [Formula: see text] and every block [Formula: see text] incident on [Formula: see text], there exists a vertex [Formula: see text] in the block [Formula: see text] such that [Formula: see text] ([Formula: see text]). The strong (weak) vb-independence number [Formula: see text] ([Formula: see text]) is the cardinality of a maximum strong (weak) vertex block independent set (SVBI-set) (WVBI-set) of [Formula: see text]. In this paper, we investigate some relationships between these four parameters. Several upper and lower bounds are established. In addition, we characterize the graphs attaining some of the bounds.


2013 ◽  
Vol Vol. 15 no. 2 (Graph Theory) ◽  
Author(s):  
Shuchao Li ◽  
Huihui Zhang ◽  
Xiaoyan Zhang

Graph Theory International audience A maximal independent set is an independent set that is not a proper subset of any other independent set. Liu [J.Q. Liu, Maximal independent sets of bipartite graphs, J. Graph Theory, 17 (4) (1993) 495-507] determined the largest number of maximal independent sets among all n-vertex bipartite graphs. The corresponding extremal graphs are forests. It is natural and interesting for us to consider this problem on bipartite graphs with cycles. Let \mathscrBₙ (resp. \mathscrBₙ') be the set of all n-vertex bipartite graphs with at least one cycle for even (resp. odd) n. In this paper, the largest number of maximal independent sets of graphs in \mathscrBₙ (resp. \mathscrBₙ') is considered. Among \mathscrBₙ the disconnected graphs with the first-, second-, \ldots, \fracn-22-th largest number of maximal independent sets are characterized, while the connected graphs in \mathscrBₙ having the largest, the second largest number of maximal independent sets are determined. Among \mathscrBₙ' graphs have the largest number of maximal independent sets are identified.


2021 ◽  
Vol 32 (01) ◽  
pp. 93-114
Author(s):  
Vadim E. Levit ◽  
David Tankus

A graph [Formula: see text] is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function [Formula: see text] is defined on its vertices. Then [Formula: see text] is [Formula: see text]well-covered if all maximal independent sets are of the same weight. For every graph [Formula: see text], the set of weight functions [Formula: see text] such that [Formula: see text] is [Formula: see text]-well-covered is a vector space, denoted as WCW(G). Deciding whether an input graph [Formula: see text] is well-covered is co-NP-complete. Therefore, finding WCW(G) is co-NP-hard. A generating subgraph of a graph [Formula: see text] is an induced complete bipartite subgraph [Formula: see text] of [Formula: see text] on vertex sets of bipartition [Formula: see text] and [Formula: see text], such that each of [Formula: see text] and [Formula: see text] is a maximal independent set of [Formula: see text], for some independent set [Formula: see text]. If [Formula: see text] is generating, then [Formula: see text] for every weight function [Formula: see text]. Therefore, generating subgraphs play an important role in finding WCW(G). The decision problem whether a subgraph of an input graph is generating is known to be NP-complete. In this article we prove NP- completeness of the problem for graphs without cycles of length 3 and 5, and for bipartite graphs with girth at least 6. On the other hand, we supply polynomial algorithms for recognizing generating subgraphs and finding WCW(G), when the input graph is bipartite without cycles of length 6. We also present a polynomial algorithm which finds WCW(G) when [Formula: see text] does not contain cycles of lengths 3, 4, 5, and 7.


2010 ◽  
Vol 20 (1) ◽  
pp. 27-51 ◽  
Author(s):  
DAVID GALVIN

Let I be an independent set drawn from the discrete d-dimensional hypercube Qd = {0, 1}d according to the hard-core distribution with parameter λ > 0 (that is, the distribution in which each independent set I is chosen with probability proportional to λ|I|). We show a sharp transition around λ = 1 in the appearance of I: for λ > 1, min{|I ∩ Ɛ|, |I ∩ |} = 0 asymptotically almost surely, where Ɛ and are the bipartition classes of Qd, whereas for λ < 1, min{|I ∩ Ɛ|, |I ∩ |} is asymptotically almost surely exponential in d. The transition occurs in an interval whose length is of order 1/d.A key step in the proof is an estimation of Zλ(Qd), the sum over independent sets in Qd with each set I given weight λ|I| (a.k.a. the hard-core partition function). We obtain the asymptotics of Zλ(Qd) for $\gl>\sqrt{2}-1$, and nearly matching upper and lower bounds for $\gl \leq \sqrt{2}-1$, extending work of Korshunov and Sapozhenko. These bounds allow us to read off some very specific information about the structure of an independent set drawn according to the hard-core distribution.We also derive a long-range influence result. For all fixed λ > 0, if I is chosen from the independent sets of Qd according to the hard-core distribution with parameter λ, conditioned on a particular v ∈ Ɛ being in I, then the probability that another vertex w is in I is o(1) for w ∈ but Ω(1) for w ∈ Ɛ.


1997 ◽  
Vol 6 (1) ◽  
pp. 115-125 ◽  
Author(s):  
RAPHAEL YUSTER

An [n, k, r]-partite graph is a graph whose vertex set, V, can be partitioned into n pairwise-disjoint independent sets, V1, …, Vn, each containing exactly k vertices, and the subgraph induced by Vi ∪ Vj contains exactly r independent edges, for 1 [les ] i < j [les ] n. An independent transversal in an [n, k, r]-partite graph is an independent set, T, consisting of n vertices, one from each Vi. An independent covering is a set of k pairwise-disjoint independent transversals. Let t(k, r) denote the maximal n for which every [n, k, r]-partite graph contains an independent transversal. Let c(k, r) be the maximal n for which every [n, k, r]-partite graph contains an independent covering. We give upper and lower bounds for these parameters. Furthermore, our bounds are constructive. These results improve and generalize previous results of Erdo″s, Gyárfás and Łuczak [5], for the case of graphs.


2020 ◽  
Vol 26 (2) ◽  
pp. 131-161
Author(s):  
Florian Bourgey ◽  
Stefano De Marco ◽  
Emmanuel Gobet ◽  
Alexandre Zhou

AbstractThe multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]}, where {f,g} are functions and {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.


Author(s):  
Raymond Greenlaw ◽  
H. James Hoover ◽  
Walter L. Ruzzo

We consider the selection of two basketball teams at a neighborhood playground to illustrate the greedy method. Usually the top two players are designated captains. All other players line up while the captains alternate choosing one player at a time. Usually, the players are picked using a greedy strategy. That is, the captains choose the best unclaimed player. The system of selection of choosing the best, most obvious, or most convenient remaining candidate is called the greedy method. Greedy algorithms often lead to easily implemented efficient sequential solutions to problems. Unfortunately, it also seems to be that sequential greedy algorithms frequently lead to solutions that are inherently sequential — the solutions produced by these algorithms cannot be duplicated rapidly in parallel, unless NC equals P. In the following subsections we will examine this phenomenon. We illustrate some of the important aspects of greedy algorithms using one that constructs a maximal independent set in a graph. An independent set is a set of vertices of a graph that are pairwise nonadjacent. A maximum independent set is such a set of largest cardinality. It is well known that finding maximum independent sets is NP-hard. An independent set is maximal if no other vertex can be added while maintaining the independent set property. In contrast to the maximum case, finding maxima? independent sets is very easy. Figure 7.1.1 depicts a simple polynomial time sequential algorithm computing a maximal independent set. The algorithm is a greedy algorithm: it processes the vertices in numerical order, always attempting to add the lowest numbered vertex that has not yet been tried. The sequential algorithm in Figure 7.1.1, having processed vertices 1,... , j -1, can easily decide whether to include vertex j. However, notice that its decision about j potentially depends on its decisions about all earlier vertices — j will be included in the maximal independent set if and only if all j' less than j and adjacent to it were excluded.


2012 ◽  
Vol 29 (3) ◽  
pp. 642-658 ◽  
Author(s):  
Benedikt M. Pötscher

Upper and lower bounds on the order of magnitude of $\sum\nolimits_{t = 1}^n {\lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } } $, where xt is an integrated process, are obtained. Furthermore, upper bounds for the order of magnitude of the related quantity $\sum\nolimits_{t = 1}^n {v_t } \lefttnq#x007C; {x_t } \righttnq#x007C;^{ - \alpha } $, where vt are random variables satisfying certain conditions, are also derived.


Sign in / Sign up

Export Citation Format

Share Document