A Measurement Framework for Explicit and Implicit Urban Traffic Sensing

2021 ◽  
Vol 17 (4) ◽  
pp. 1-27
Author(s):  
Zhou Qin ◽  
Zhihan Fang ◽  
Yunhuai Liu ◽  
Chang Tan ◽  
Desheng Zhang

Urban traffic sensing has been investigated extensively by different real-time sensing approaches due to important applications such as navigation and emergency services. Basically, the existing traffic sensing approaches can be classified into two categories by sensing natures, i.e., explicit and implicit sensing. In this article, we design a measurement framework called EXIMIUS for a large-scale data-driven study to investigate the strengths and weaknesses of two sensing approaches by using two particular systems for traffic sensing as concrete examples. In our investigation, we utilize TB-level data from two systems: (i) GPS data from five thousand vehicles, (ii) signaling data from three million cellphone users, from the Chinese city Hefei. Our study adopts a widely used concept called crowdedness level to rigorously explore the impacts of contexts on traffic conditions including population density, region functions, road categories, rush hours, holidays, weather, and so on, based on various context data. We quantify the strengths and weaknesses of these two sensing approaches in different scenarios and then we explore the possibility of unifying two sensing approaches for better performance by using a truth discovery-based data fusion scheme. Our results provide a few valuable insights for urban sensing based on explicit and implicit data from transportation and telecommunication domains.

2016 ◽  
Vol 48 (7) ◽  
pp. 502-512 ◽  
Author(s):  
Barbara Medvar ◽  
Viswanathan Raghuram ◽  
Trairak Pisitkun ◽  
Abhijit Sarkar ◽  
Mark A. Knepper

Aquaporin-2 (AQP2) is regulated in part via vasopressin-mediated changes in protein half-life that are in turn dependent on AQP2 ubiquitination. Here we addressed the question, “What E3 ubiquitin ligase is most likely to be responsible for AQP2 ubiquitination?” using large-scale data integration based on Bayes' rule. The first step was to bioinformatically identify all E3 ligase genes coded by the human genome. The 377 E3 ubiquitin ligases identified in the human genome, consisting predominant of HECT, RING, and U-box proteins, have been used to create a publically accessible and downloadable online database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/E3-ligases/ ). We also curated a second database of E3 ligase accessory proteins that included BTB domain proteins, cullins, SOCS-box proteins, and F-box proteins. Using Bayes' theorem to integrate information from multiple large-scale proteomic and transcriptomic datasets, we ranked these 377 E3 ligases with respect to their probability of interaction with AQP2. Application of Bayes' rule identified the E3 ligases most likely to interact with AQP2 as (in order of probability): NEDD4 and NEDD4L (tied for first), AMFR, STUB1, ITCH, ZFPL1. Significantly, the two E3 ligases tied for top rank have also been studied extensively in the reductionist literature as regulatory proteins in renal tubule epithelia. The concordance of conclusions from reductionist and systems-level data provides strong motivation for further studies of the roles of NEDD4 and NEDD4L in the regulation of AQP2 protein turnover.


2016 ◽  
Vol 55 (03) ◽  
pp. 284-291
Author(s):  
Junghyun Park ◽  
Seokjoon Yoon ◽  
Minki Kim

SummaryBackground: Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data.Objectives: Based on mathematical theory, this study proposes a new approach to using Benford’s Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis.Methods: We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford’s Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea’s Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford’s Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data.Results: We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford’s Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease.Conclusions: Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford’s Law, relatively high contamination ratios are required at conventional significance levels.


2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

2016 ◽  
Author(s):  
John W. Williams ◽  
◽  
Simon Goring ◽  
Eric Grimm ◽  
Jason McLachlan

Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


SLEEP ◽  
2020 ◽  
Author(s):  
Luca Menghini ◽  
Nicola Cellini ◽  
Aimee Goldstone ◽  
Fiona C Baker ◽  
Massimiliano de Zambotti

Abstract Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical settings.


Sign in / Sign up

Export Citation Format

Share Document