Motion Analysis and Gait Planning of a Biped Walking Chair

2021 ◽  
Author(s):  
Delei Fang ◽  
Jianye Niu ◽  
Zhuo Wang ◽  
Ping Zan ◽  
Wen Wen ◽  
...  
2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097634
Author(s):  
Huan Tran Thien ◽  
Cao Van Kien ◽  
Ho Pham Huy Anh

This article proposes a new stable biped walking pattern generator with preset step-length value, optimized by multi-objective JAYA algorithm. The biped robot is modeled as a kinetic chain of 11 links connected by 10 joints. The inverse kinematics of the biped is applied to derive the specified biped hip and feet positions. The two objectives related to the biped walking stability and the biped to follow the preset step-length magnitude have been fully investigated and Pareto optimal front of solutions has been acquired. To demonstrate the effectiveness and superiority of proposed multi-objective JAYA, the results are compared to those of MO-PSO and MO-NSGA-2 optimization approaches. The simulation and experiment results investigated over the real small-scaled biped HUBOT-4 assert that the multi-objective JAYA technique ensures an outperforming effective and stable gait planning and walking for biped with accurate preset step-length value.


2013 ◽  
Vol 706-708 ◽  
pp. 674-677
Author(s):  
Hai Long Chen ◽  
Xiao Wu ◽  
Jun Du ◽  
Jin Ping Tang

This paper uses biped walking robot as the research object, and designs robots original system, based on the requirements of Biped Walking Robot Competition of China. According to the biped walking robots characteristics of multi-joints, many degrees of freedom, multivariable, strong coupling and nonlinearity [, we can build system model using the Denavi - Hartenberg coordinate, describe the system model by the homogeneous coordinate transformation theory, and then plan on system gait based on ZMP stability . Finally, we can solve for the joint trajectory of the system by using computer-aided software.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Liu Chao ◽  
Yao Yan-An

An untraditional application of the four-link RCCR (two revolute and two cylindric joints) mechanism is presented in this paper and is used as a novel biped walking mechanism. By taking advantage of the singular configuration of the mechanism, two actuators are employed to realize planar movements. Kinematic analysis, gait planning, and stability analysis are performed, and a prototype is developed and tested.


Author(s):  
Sheng Dong ◽  
Zhaohui Yuan ◽  
Jianrui Zhang ◽  
Shangjun Ma

In this paper, based on the linear inverted pendulum (LIP) model, the multi-walking of biped robot is analogous to the multi-swing of a three-dimensional inverted pendulum. In terms of the concept of 'divergent component of motion (DCM)', the dynamic equations expressed by using Center of Mass (COM) and DCM are studied. Two DCM closed-loop controllers are designed:one-step DCM terminal invariant disturbance rejection controller and real-time DCM trajectory tracking closed-loop controller. Both controllers can effectively suppress the disturbance, so that the DCM of the actual robot does not diverge, and which is used to plan the COM trajectory of the biped walking process. Based on the COM trajectory and biped end trajectory, the numerical method for solving inverse kinematics of biped robot is studied. The whole set of solving problems from input footprint to output joint angle in biped walking process is completed, and systematize the method of biped gait planning. Finally, combining with a ubiquitous robot model, all the algorithms in this paper are simulated via MATLAB platform. The simulation results verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document