Research on Gait Planning and Inverse Kinematics Solving of Biped Walking Robots

Author(s):  
Ying Zhang ◽  
Shuanghong Li ◽  
Boyu Han ◽  
Qiaoling Du
2020 ◽  
Vol 17 (6) ◽  
pp. 172988142097634
Author(s):  
Huan Tran Thien ◽  
Cao Van Kien ◽  
Ho Pham Huy Anh

This article proposes a new stable biped walking pattern generator with preset step-length value, optimized by multi-objective JAYA algorithm. The biped robot is modeled as a kinetic chain of 11 links connected by 10 joints. The inverse kinematics of the biped is applied to derive the specified biped hip and feet positions. The two objectives related to the biped walking stability and the biped to follow the preset step-length magnitude have been fully investigated and Pareto optimal front of solutions has been acquired. To demonstrate the effectiveness and superiority of proposed multi-objective JAYA, the results are compared to those of MO-PSO and MO-NSGA-2 optimization approaches. The simulation and experiment results investigated over the real small-scaled biped HUBOT-4 assert that the multi-objective JAYA technique ensures an outperforming effective and stable gait planning and walking for biped with accurate preset step-length value.


2013 ◽  
Vol 706-708 ◽  
pp. 674-677
Author(s):  
Hai Long Chen ◽  
Xiao Wu ◽  
Jun Du ◽  
Jin Ping Tang

This paper uses biped walking robot as the research object, and designs robots original system, based on the requirements of Biped Walking Robot Competition of China. According to the biped walking robots characteristics of multi-joints, many degrees of freedom, multivariable, strong coupling and nonlinearity [, we can build system model using the Denavi - Hartenberg coordinate, describe the system model by the homogeneous coordinate transformation theory, and then plan on system gait based on ZMP stability . Finally, we can solve for the joint trajectory of the system by using computer-aided software.


Author(s):  
Sheng Dong ◽  
Zhaohui Yuan ◽  
Jianrui Zhang ◽  
Shangjun Ma

In this paper, based on the linear inverted pendulum (LIP) model, the multi-walking of biped robot is analogous to the multi-swing of a three-dimensional inverted pendulum. In terms of the concept of 'divergent component of motion (DCM)', the dynamic equations expressed by using Center of Mass (COM) and DCM are studied. Two DCM closed-loop controllers are designed:one-step DCM terminal invariant disturbance rejection controller and real-time DCM trajectory tracking closed-loop controller. Both controllers can effectively suppress the disturbance, so that the DCM of the actual robot does not diverge, and which is used to plan the COM trajectory of the biped walking process. Based on the COM trajectory and biped end trajectory, the numerical method for solving inverse kinematics of biped robot is studied. The whole set of solving problems from input footprint to output joint angle in biped walking process is completed, and systematize the method of biped gait planning. Finally, combining with a ubiquitous robot model, all the algorithms in this paper are simulated via MATLAB platform. The simulation results verify the effectiveness of the method.


Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 48 ◽  
Author(s):  
Ruiqin Li ◽  
Hongwei Meng ◽  
Shaoping Bai ◽  
Yinyin Yao ◽  
Jianwei Zhang

The paper presents an innovative hexapod walking robot built with 3-UPU parallel mechanism. In the robot, the parallel mechanism is used as both an actuator to generate walking and also a connecting body to connect two groups of three legs, thus enabling the robot to walk with simple gait by very few motors. In this paper, forward and inverse kinematics solutions are obtained. The workspace of the parallel mechanism is analyzed using limit boundary search method. The walking stability of the robot is analyzed, which yields the robot’s maximum step length. The gait planning of the hexapod walking robot is studied for walking on both flat and uneven terrains. The new robot, combining the advantages of parallel robot and walking robot, has a large carrying capacity, strong passing ability, flexible turning ability, and simple gait control for its deployment for uneven terrains.


2018 ◽  
Vol 7 (2.28) ◽  
pp. 123
Author(s):  
N Pop ◽  
L Vladareanu ◽  
H Wang ◽  
M Ungureanu ◽  
M Migdalovici ◽  
...  

Recovering and maintaining the balance of the biped walking robots play an important role in their operation. In this article we will analyze some strategies for balancing in the sagittal plane, in the presence of external disturbances and changing the proportions between leg’s length and trunk’s length (golden section), and/or adding weights (boot type) between the ankle and the knee so that the center of gravity is as low as possible. For equilibrium recovery, we suggest that the biped walking model be equipped with actuator that provides a torque at the hip. or/and at the ankle. The strategy of balance has a goal to move the disturbed system to the desired equilibrium state. We chose to study, the model of a double linear pendulum inverted under-actuated, with one passive and one active joint. Each case study and usage of these strategies is validated by Webots and is applied for NAO robot. 


1993 ◽  
Vol 10 (4) ◽  
pp. 531-555 ◽  
Author(s):  
Ching-Long Shih ◽  
William A. Gruver ◽  
Tsu-Tian Lee

2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Mingfeng Wang ◽  
Marco Ceccarelli ◽  
Giuseppe Carbone

Abstract In this work, the Cassino Biped Locomotor, a biped walking robot, is presented as the leg design by using reduced parallel mechanisms. The proposed biped locomotor consists of two identical tripod leg mechanisms with a three degree-of-freedom parallel manipulator architecture. Kinematics analysis is carried out in terms of the forward and inverse kinematics of one leg mechanism and inverse kinematics of the biped locomotor. The walking operation is discussed in detail with gait planning and trajectories of feet and waist. A CAD model is elaborated in solidworks® environment and the corresponding prototype is fabricated with low-cost user-oriented features by using commercial components and structural parts that are manufactured by using 3D printing. An experimental layout and corresponding test modes are illustrated for characterizing the walking operation performance. Experimental results are analyzed for an operation performance evaluation and architecture design characterization of the Cassino Biped Locomotor.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Liyang Wang ◽  
Ming Chen ◽  
Xiangkui Jiang ◽  
Wei Wang

The application of biped robots is always trapped by their high energy consumption. This paper makes a contribution by optimizing the joint torques to decrease the energy consumption without changing the biped gaits. In this work, a constrained quadratic programming (QP) problem for energy optimization is formulated. A neurodynamics-based solver is presented to solve the QP problem. Differing from the existing literatures, the proposed neurodynamics-based energy optimization (NEO) strategy minimizes the energy consumption and guarantees the following three important constraints simultaneously: (i) the force-moment equilibrium equation of biped robots, (ii) frictions applied by each leg on the ground to hold the biped robot without slippage and tipping over, and (iii) physical limits of the motors. Simulations demonstrate that the proposed strategy is effective for energy-efficient biped walking.


Sign in / Sign up

Export Citation Format

Share Document