Head Movement Detection using Deep Learning and Face Edge Detection (FED) Method

2021 ◽  
Author(s):  
Gusti Pangestu ◽  
Fairuz Iqbal Maulana ◽  
Chasandra Puspitasari ◽  
Sidharta Sidharta ◽  
Albert Verasius Sano ◽  
...  
Author(s):  
Dong Li ◽  
Xiao Pan ◽  
Zhenzhou Fu ◽  
Luonan Chang ◽  
Guangjun Zhang

2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Yanjun Wang ◽  
Shaochun Li ◽  
Fei Teng ◽  
Yunhao Lin ◽  
Mengjie Wang ◽  
...  

Accurate roof information of buildings can be obtained from UAV high-resolution images. The large-scale accurate recognition of roof types (such as gabled, flat, hipped, complex and mono-pitched roofs) of rural buildings is crucial for rural planning and construction. At present, most UAV high-resolution optical images only have red, green and blue (RGB) band information, which aggravates the problems of inter-class similarity and intra-class variability of image features. Furthermore, the different roof types of rural buildings are complex, spatially scattered, and easily covered by vegetation, which in turn leads to the low accuracy of roof type identification by existing methods. In response to the above problems, this paper proposes a method for identifying roof types of complex rural buildings based on visible high-resolution remote sensing images from UAVs. First, the fusion of deep learning networks with different visual features is investigated to analyze the effect of the different feature combinations of the visible difference vegetation index (VDVI) and Sobel edge detection features and UAV visible images on model recognition of rural building roof types. Secondly, an improved Mask R-CNN model is proposed to learn more complex features of different types of images of building roofs by using the ResNet152 feature extraction network with migration learning. After we obtained roof type recognition results in two test areas, we evaluated the accuracy of the results using the confusion matrix and obtained the following conclusions: (1) the model with RGB images incorporating Sobel edge detection features has the highest accuracy and enables the model to recognize more and more accurately the roof types of different morphological rural buildings, and the model recognition accuracy (Kappa coefficient (KC)) compared to that of RGB images is on average improved by 0.115; (2) compared with the original Mask R-CNN, U-Net, DeeplabV3 and PSPNet deep learning models, the improved Mask R-CNN model has the highest accuracy in recognizing the roof types of rural buildings, with F1-score, KC and OA averaging 0.777, 0.821 and 0.905, respectively. The method can obtain clear and accurate profiles and types of rural building roofs, and can be extended for green roof suitability evaluation, rooftop solar potential assessment, and other building roof surveys, management and planning.


Bioengineered ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 693-707 ◽  
Author(s):  
Xiaofeng Li ◽  
Hongshuang Jiao ◽  
Yanwei Wang

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6219
Author(s):  
Jhon Jairo Vega Díaz ◽  
Michiel Vlaminck ◽  
Dionysios Lefkaditis ◽  
Sergio Alejandro Orjuela Vargas ◽  
Hiep Luong

The installation of solar plants everywhere in the world increases year by year. Automated diagnostic methods are needed to inspect the solar plants and to identify anomalies within these photovoltaic panels. The inspection is usually carried out by unmanned aerial vehicles (UAVs) using thermal imaging sensors. The first step in the whole process is to detect the solar panels in those images. However, standard image processing techniques fail in case of low-contrast images or images with complex backgrounds. Moreover, the shades of power lines or structures similar to solar panels impede the automated detection process. In this research, two self-developed methods are compared for the detection of panels in this context, one based on classical techniques and another one based on deep learning, both with a common post-processing step. The first method is based on edge detection and classification, in contrast to the second method is based on training a region based convolutional neural networks to identify a panel. The first method corrects for the low contrast of the thermal image using several preprocessing techniques. Subsequently, edge detection, segmentation and segment classification are applied. The latter is done using a support vector machine trained with an optimized texture descriptor vector. The second method is based on deep learning trained with images that have been subjected to three different pre-processing operations. The postprocessing use the detected panels to infer the location of panels that were not detected. This step selects contours from detected panels based on the panel area and the angle of rotation. Then new panels are determined by the extrapolation of these contours. The panels in 100 random images taken from eleven UAV flights over three solar plants are labeled and used to evaluate the detection methods. The metrics for the new method based on classical techniques reaches a precision of 0.997, a recall of 0.970 and a F1 score of 0.983. The metrics for the method of deep learning reaches a precision of 0.996, a recall of 0.981 and a F1 score of 0.989. The two panel detection methods are highly effective in the presence of complex backgrounds.


2019 ◽  
Vol 33 (2) ◽  
pp. 504-515 ◽  
Author(s):  
Maryam Gholizadeh-Ansari ◽  
Javad Alirezaie ◽  
Paul Babyn

2018 ◽  
Vol 144 ◽  
pp. 180-191 ◽  
Author(s):  
Nastaran Mohammadian Rad ◽  
Seyed Mostafa Kia ◽  
Calogero Zarbo ◽  
Twan van Laarhoven ◽  
Giuseppe Jurman ◽  
...  

2021 ◽  
Author(s):  
S. Sharanyaa ◽  
Yazhini. K ◽  
Madhumitha .R.P ◽  
Yamuna Rani.B

Sign in / Sign up

Export Citation Format

Share Document