Deep-Learning based Robust Edge Detection for Point Pair Feature-based Pose Estimation with Multiple Edge Appearance Models

Author(s):  
Diyi Liu ◽  
Shogo Arai ◽  
Fuyuki Tokuda ◽  
Yajun Xu ◽  
Jun Kinugawa ◽  
...  
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2719 ◽  
Author(s):  
Diyi Liu ◽  
Shogo Arai ◽  
Jiaqi Miao ◽  
Jun Kinugawa ◽  
Zhao Wang ◽  
...  

Automation of the bin picking task with robots entails the key step of pose estimation, which identifies and locates objects so that the robot can pick and manipulate the object in an accurate and reliable way. This paper proposes a novel point pair feature-based descriptor named Boundary-to-Boundary-using-Tangent-Line (B2B-TL) to estimate the pose of industrial parts including some parts whose point clouds lack key details, for example, the point cloud of the ridges of a part. The proposed descriptor utilizes the 3D point cloud data and 2D image data of the scene simultaneously, and the 2D image data could compensate the missing key details of the point cloud. Based on the descriptor B2B-TL, Multiple Edge Appearance Models (MEAM), a method using multiple models to describe the target object, is proposed to increase the recognition rate and reduce the computation time. A novel pipeline of an online computation process is presented to take advantage of B2B-TL and MEAM. Our algorithm is evaluated against synthetic and real scenes and implemented in a bin picking system. The experimental results show that our method is sufficiently accurate for a robot to grasp industrial parts and is fast enough to be used in a real factory environment.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2678 ◽  
Author(s):  
Joel Vidal ◽  
Chyi-Yeu Lin ◽  
Xavier Lladó ◽  
Robert Martí

Pose estimation of free-form objects is a crucial task towards flexible and reliable highly complex autonomous systems. Recently, methods based on range and RGB-D data have shown promising results with relatively high recognition rates and fast running times. On this line, this paper presents a feature-based method for 6D pose estimation of rigid objects based on the Point Pair Features voting approach. The presented solution combines a novel preprocessing step, which takes into consideration the discriminative value of surface information, with an improved matching method for Point Pair Features. In addition, an improved clustering step and a novel view-dependent re-scoring process are proposed alongside two scene consistency verification steps. The proposed method performance is evaluated against 15 state-of-the-art solutions on a set of extensive and variate publicly available datasets with real-world scenarios under clutter and occlusion. The presented results show that the proposed method outperforms all tested state-of-the-art methods for all datasets with an overall 6.6% relative improvement compared to the second best method.


2021 ◽  
pp. 103775
Author(s):  
Tuan-Tang Le ◽  
Trung-Son Le ◽  
Yu-Ru Chen ◽  
Joel Vidal ◽  
Chyi-Yeu Lin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew P. Creagh ◽  
Florian Lipsmeier ◽  
Michael Lindemann ◽  
Maarten De Vos

AbstractThe emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory information learned on human activity recognition (HAR) tasks collected from wearable smartphone sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as well as DCNN models trained end-to-end, by upwards of 8–15%. A lack of transparency of “black-box” deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the patterns captured from smartphone-based inertial sensor data that were reflective of those who are healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations were distinct characteristics that distinguished MS disability from healthy participants. Robust and interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly augment the current in-clinic assessment picture for PwMS, to inform better disease management techniques, and enable the development of better therapeutic interventions.


2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


Sign in / Sign up

Export Citation Format

Share Document