Fishtank Sandbox: A Software Framework for Collaborative Usability Testing of Fish Tank Virtual Reality Interaction Techniques

2021 ◽  
Author(s):  
Vishal Jangid ◽  
Sirisilp Kongsilp
Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 715
Author(s):  
Alexander Schäfer ◽  
Gerd Reis ◽  
Didier Stricker

Virtual Reality (VR) technology offers users the possibility to immerse and freely navigate through virtual worlds. An important component for achieving a high degree of immersion in VR is locomotion. Often discussed in the literature, a natural and effective way of controlling locomotion is still a general problem which needs to be solved. Recently, VR headset manufacturers have been integrating more sensors, allowing hand or eye tracking without any additional required equipment. This enables a wide range of application scenarios with natural freehand interaction techniques where no additional hardware is required. This paper focuses on techniques to control teleportation-based locomotion with hand gestures, where users are able to move around in VR using their hands only. With the help of a comprehensive study involving 21 participants, four different techniques are evaluated. The effectiveness and efficiency as well as user preferences of the presented techniques are determined. Two two-handed and two one-handed techniques are evaluated, revealing that it is possible to move comfortable and effectively through virtual worlds with a single hand only.


Author(s):  
Denis Bienroth ◽  
Hieu T. Nim ◽  
Dimitar Garkov ◽  
Karsten Klein ◽  
Sabrina Jaeger-Honz ◽  
...  

AbstractSpatially resolved transcriptomics is an emerging class of high-throughput technologies that enable biologists to systematically investigate the expression of genes along with spatial information. Upon data acquisition, one major hurdle is the subsequent interpretation and visualization of the datasets acquired. To address this challenge, VR-Cardiomicsis presented, which is a novel data visualization system with interactive functionalities designed to help biologists interpret spatially resolved transcriptomic datasets. By implementing the system in two separate immersive environments, fish tank virtual reality (FTVR) and head-mounted display virtual reality (HMD-VR), biologists can interact with the data in novel ways not previously possible, such as visually exploring the gene expression patterns of an organ, and comparing genes based on their 3D expression profiles. Further, a biologist-driven use-case is presented, in which immersive environments facilitate biologists to explore and compare the heart expression profiles of different genes.


1997 ◽  
Vol 1 (1) ◽  
pp. 61-72 ◽  
Author(s):  
M. Haubner ◽  
C. Krapichler ◽  
A. Losch ◽  
K.-H. Englmeier ◽  
W. Van Eimeren

2018 ◽  
Vol 26 (3) ◽  
pp. 297-321 ◽  
Author(s):  
Alexander Kulik ◽  
André Kunert ◽  
Stephan Beck ◽  
Carl-Feofan Matthes ◽  
Andre Schollmeyer ◽  
...  

In this article, we present a novel, multi-user, virtual reality environment for the interactive, collaborative 3D analysis of large 3D scans and the technical advancements that were necessary to build it: a multi-view rendering system for large 3D point clouds, a suitable display infrastructure, and a suite of collaborative 3D interaction techniques. The cultural heritage site of Valcamonica in Italy with its large collection of prehistoric rock-art served as an exemplary use case for evaluation. The results show that our output-sensitive level-of-detail rendering system is capable of visualizing a 3D dataset with an aggregate size of more than 14 billion points at interactive frame rates. The system design in this exemplar application results from close exchange with a small group of potential users: archaeologists with expertise in rockart. The system allows them to explore the prehistoric art and its spatial context with highly realistic appearance. A set of dedicated interaction techniques was developed to facilitate collaborative visual analysis. A multi-display workspace supports the immediate comparison of geographically distributed artifacts. An expert review of the final demonstrator confirmed the potential for added value in rock-art research and the usability of our collaborative interaction techniques.


2018 ◽  
Vol 35 (6) ◽  
pp. 406-416 ◽  
Author(s):  
Kathryn A. Birnie ◽  
Yalinie Kulandaivelu ◽  
Lindsay Jibb ◽  
Petra Hroch ◽  
Karyn Positano ◽  
...  

Purpose: Needle procedures are among the most distressing aspects of pediatric cancer-related treatment. Virtual reality (VR) distraction offers promise for needle-related pain and distress given its highly immersive and interactive virtual environment. This study assessed the usability (ease of use and understanding, acceptability) of a custom VR intervention for children with cancer undergoing implantable venous access device (IVAD) needle insertion. Method: Three iterative cycles of mixed-method usability testing with semistructured interviews were undertaken to refine the VR. Results: Participants included 17 children and adolescents (8-18 years old) with cancer who used the VR intervention prior to or during IVAD access. Most participants reported the VR as easy to use (82%) and understand (94%), and would like to use it during subsequent needle procedures (94%). Based on usability testing, refinements were made to VR hardware, software, and clinical implementation. Refinements focused on increasing responsiveness, interaction, and immersion of the VR program, reducing head movement for VR interaction, and enabling participant alerts to steps of the procedure by clinical staff. No adverse events of nausea or dizziness were reported. Conclusions: The VR intervention was deemed acceptable and safe. Next steps include assessing feasibility and effectiveness of the VR intervention for pain and distress.


Sign in / Sign up

Export Citation Format

Share Document